tf.fake_quant_with_min_max_vars_per_channel_gradient( gradients, inputs, min, max, num_bits=8, narrow_range=False, name=None )
Defined in tensorflow/python/ops/gen_array_ops.py
.
See the guide: Tensor Transformations > Fake quantization
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
gradients
: A Tensor
of type float32
. Backpropagated gradients above the FakeQuantWithMinMaxVars operation, shape one of: [d]
, [b, d]
, [b, h, w, d]
.inputs
: A Tensor
of type float32
. Values passed as inputs to the FakeQuantWithMinMaxVars operation, shape same as gradients
. min, max: Quantization interval, floats of shape [d]
.min
: A Tensor
of type float32
.max
: A Tensor
of type float32
.num_bits
: An optional int
. Defaults to 8
. The bitwidth of the quantization; between 2 and 16, inclusive.narrow_range
: An optional bool
. Defaults to False
. Whether to quantize into 2^num_bits - 1 distinct values.name
: A name for the operation (optional).A tuple of Tensor
objects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max).
backprops_wrt_input
: A Tensor
of type float32
.backprop_wrt_min
: A Tensor
of type float32
.backprop_wrt_max
: A Tensor
of type float32
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/fake_quant_with_min_max_vars_per_channel_gradient