tf.feature_column.bucketized_column(
source_column,
boundaries
)
Defined in tensorflow/python/feature_column/feature_column.py.
Represents discretized dense input.
Buckets include the left boundary, and exclude the right boundary. Namely, boundaries=[0., 1., 2.] generates buckets (-inf, 0.), [0., 1.), [1., 2.), and [2., +inf).
For example, if the inputs are
boundaries = [0, 10, 100]
input tensor = [[-5, 10000]
[150, 10]
[5, 100]]
then the output will be
output = [[0, 3]
[3, 2]
[1, 3]]
Example:
price = numeric_column('price')
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
# or
columns = [bucketized_price, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
bucketized_column can also be crossed with another categorical column using crossed_column:
price = numeric_column('price')
# bucketized_column converts numerical feature to a categorical one.
bucketized_price = bucketized_column(price, boundaries=[...])
# 'keywords' is a string feature.
price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K)
columns = [price_x_keywords, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
source_column: A one-dimensional dense column which is generated with numeric_column.boundaries: A sorted list or tuple of floats specifying the boundaries.A _BucketizedColumn.
ValueError: If source_column is not a numeric column, or if it is not one-dimensional.ValueError: If boundaries is not a sorted list or tuple.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/bucketized_column