tf.feature_column.bucketized_column( source_column, boundaries )
Defined in tensorflow/python/feature_column/feature_column.py
.
Represents discretized dense input.
Buckets include the left boundary, and exclude the right boundary. Namely, boundaries=[0., 1., 2.]
generates buckets (-inf, 0.)
, [0., 1.)
, [1., 2.)
, and [2., +inf)
.
For example, if the inputs are
boundaries = [0, 10, 100] input tensor = [[-5, 10000] [150, 10] [5, 100]]
then the output will be
output = [[0, 3] [3, 2] [1, 3]]
Example:
price = numeric_column('price') bucketized_price = bucketized_column(price, boundaries=[...]) columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) # or columns = [bucketized_price, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns)
bucketized_column
can also be crossed with another categorical column using crossed_column
:
price = numeric_column('price') # bucketized_column converts numerical feature to a categorical one. bucketized_price = bucketized_column(price, boundaries=[...]) # 'keywords' is a string feature. price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K) columns = [price_x_keywords, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns)
source_column
: A one-dimensional dense column which is generated with numeric_column
.boundaries
: A sorted list or tuple of floats specifying the boundaries.A _BucketizedColumn
.
ValueError
: If source_column
is not a numeric column, or if it is not one-dimensional.ValueError
: If boundaries
is not a sorted list or tuple.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/bucketized_column