tf.feature_column.categorical_column_with_hash_bucket( key, hash_bucket_size, dtype=tf.string )
Defined in tensorflow/python/feature_column/feature_column.py
.
Represents sparse feature where ids are set by hashing.
Use this when your sparse features are in string or integer format, and you want to distribute your inputs into a finite number of buckets by hashing. output_id = Hash(input_feature_string) % bucket_size
For input dictionary features
, features[key]
is either Tensor
or SparseTensor
. If Tensor
, missing values can be represented by -1
for int and ''
for string. Note that these values are independent of the default_value
argument.
Example:
keywords = categorical_column_with_hash_bucket("keywords", 10K) columns = [keywords, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction = linear_model(features, columns) # or keywords_embedded = embedding_column(keywords, 16) columns = [keywords_embedded, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns)
key
: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature Tensor
objects, and feature columns.hash_bucket_size
: An int > 1. The number of buckets.dtype
: The type of features. Only string and integer types are supported.A _HashedCategoricalColumn
.
ValueError
: hash_bucket_size
is not greater than 1.ValueError
: dtype
is neither string nor integer.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_hash_bucket