tf.feature_column.categorical_column_with_identity( key, num_buckets, default_value=None )
Defined in tensorflow/python/feature_column/feature_column.py
.
A _CategoricalColumn
that returns identity values.
Use this when your inputs are integers in the range [0, num_buckets)
, and you want to use the input value itself as the categorical ID. Values outside this range will result in default_value
if specified, otherwise it will fail.
Typically, this is used for contiguous ranges of integer indexes, but it doesn't have to be. This might be inefficient, however, if many of IDs are unused. Consider categorical_column_with_hash_bucket
in that case.
For input dictionary features
, features[key]
is either Tensor
or SparseTensor
. If Tensor
, missing values can be represented by -1
for int and ''
for string. Note that these values are independent of the default_value
argument.
In the following examples, each input in the range [0, 1000000)
is assigned the same value. All other inputs are assigned default_value
0. Note that a literal 0 in inputs will result in the same default ID.
Linear model:
video_id = categorical_column_with_identity( key='video_id', num_buckets=1000000, default_value=0) columns = [video_id, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns)
Embedding for a DNN model:
columns = [embedding_column(video_id, 9),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns)
key
: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature Tensor
objects, and feature columns.num_buckets
: Range of inputs and outputs is [0, num_buckets)
.default_value
: If None
, this column's graph operations will fail for out-of-range inputs. Otherwise, this value must be in the range [0, num_buckets)
, and will replace inputs in that range.A _CategoricalColumn
that returns identity values.
ValueError
: if num_buckets
is less than one.ValueError
: if default_value
is not in range [0, num_buckets)
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_identity