tf.feature_column.categorical_column_with_vocabulary_list( key, vocabulary_list, dtype=None, default_value=-1, num_oov_buckets=0 )
Defined in tensorflow/python/feature_column/feature_column.py
.
A _CategoricalColumn
with in-memory vocabulary.
Use this when your inputs are in string or integer format, and you have an in-memory vocabulary mapping each value to an integer ID. By default, out-of-vocabulary values are ignored. Use either (but not both) of num_oov_buckets
and default_value
to specify how to include out-of-vocabulary values.
For input dictionary features
, features[key]
is either Tensor
or SparseTensor
. If Tensor
, missing values can be represented by -1
for int and ''
for string. Note that these values are independent of the default_value
argument.
Example with num_oov_buckets
: In the following example, each input in vocabulary_list
is assigned an ID 0-3 corresponding to its index (e.g., input 'B' produces output 2). All other inputs are hashed and assigned an ID 4-5.
colors = categorical_column_with_vocabulary_list( key='colors', vocabulary_list=('R', 'G', 'B', 'Y'), num_oov_buckets=2) columns = [colors, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns)
Example with default_value
: In the following example, each input in vocabulary_list
is assigned an ID 0-4 corresponding to its index (e.g., input 'B' produces output 3). All other inputs are assigned default_value
0.
colors = categorical_column_with_vocabulary_list( key='colors', vocabulary_list=('X', 'R', 'G', 'B', 'Y'), default_value=0) columns = [colors, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) linear_prediction, _, _ = linear_model(features, columns)
And to make an embedding with either:
columns = [embedding_column(colors, 3),...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns)
key
: A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature Tensor
objects, and feature columns.vocabulary_list
: An ordered iterable defining the vocabulary. Each feature is mapped to the index of its value (if present) in vocabulary_list
. Must be castable to dtype
.dtype
: The type of features. Only string and integer types are supported. If None
, it will be inferred from vocabulary_list
.default_value
: The integer ID value to return for out-of-vocabulary feature values, defaults to -1
. This can not be specified with a positive num_oov_buckets
.num_oov_buckets
: Non-negative integer, the number of out-of-vocabulary buckets. All out-of-vocabulary inputs will be assigned IDs in the range [len(vocabulary_list), len(vocabulary_list)+num_oov_buckets)
based on a hash of the input value. A positive num_oov_buckets
can not be specified with default_value
.A _CategoricalColumn
with in-memory vocabulary.
ValueError
: if vocabulary_list
is empty, or contains duplicate keys.ValueError
: num_oov_buckets
is a negative integer.ValueError
: num_oov_buckets
and default_value
are both specified.ValueError
: if dtype
is not integer or string.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list