tf.feature_column.indicator_column(categorical_column)
Defined in tensorflow/python/feature_column/feature_column.py
.
Represents multi-hot representation of given categorical column.
Used to wrap any categorical_column_*
(e.g., to feed to DNN). Use embedding_column
if the inputs are sparse.
name = indicator_column(categorical_column_with_vocabulary_list( 'name', ['bob', 'george', 'wanda']) columns = [name, ...] features = tf.parse_example(..., features=make_parse_example_spec(columns)) dense_tensor = input_layer(features, columns) dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"] dense_tensor == [[1, 0, 1]] # If "name" bytes_list is ["bob", "wanda"] dense_tensor == [[2, 0, 0]] # If "name" bytes_list is ["bob", "bob"]
categorical_column
: A _CategoricalColumn
which is created by categorical_column_with_*
or crossed_column
functions.An _IndicatorColumn
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column