tf.feature_column.indicator_column(categorical_column)
Defined in tensorflow/python/feature_column/feature_column.py.
Represents multi-hot representation of given categorical column.
Used to wrap any categorical_column_* (e.g., to feed to DNN). Use embedding_column if the inputs are sparse.
name = indicator_column(categorical_column_with_vocabulary_list(
'name', ['bob', 'george', 'wanda'])
columns = [name, ...]
features = tf.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"]
dense_tensor == [[1, 0, 1]] # If "name" bytes_list is ["bob", "wanda"]
dense_tensor == [[2, 0, 0]] # If "name" bytes_list is ["bob", "bob"]
categorical_column: A _CategoricalColumn which is created by categorical_column_with_* or crossed_column functions.An _IndicatorColumn.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column