tf.feature_column.make_parse_example_spec(feature_columns)
Defined in tensorflow/python/feature_column/feature_column.py
.
Creates parsing spec dictionary from input feature_columns.
The returned dictionary can be used as arg 'features' in tf.parse_example
.
Typical usage example:
# Define features and transformations feature_a = categorical_column_with_vocabulary_file(...) feature_b = numeric_column(...) feature_c_bucketized = bucketized_column(numeric_column("feature_c"), ...) feature_a_x_feature_c = crossed_column( columns=["feature_a", feature_c_bucketized], ...) feature_columns = set( [feature_b, feature_c_bucketized, feature_a_x_feature_c]) features = tf.parse_example( serialized=serialized_examples, features=make_parse_example_spec(feature_columns))
For the above example, make_parse_example_spec would return the dict:
{ "feature_a": parsing_ops.VarLenFeature(tf.string), "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32), "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32) }
feature_columns
: An iterable containing all feature columns. All items should be instances of classes derived from _FeatureColumn
.A dict mapping each feature key to a FixedLenFeature
or VarLenFeature
value.
ValueError
: If any of the given feature_columns
is not a _FeatureColumn
instance.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/feature_column/make_parse_example_spec