tf.foldr( fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None )
Defined in tensorflow/python/ops/functional_ops.py
.
See the guide: Higher Order Functions > Higher Order Operators
foldr on the list of tensors unpacked from elems
on dimension 0.
This foldr operator repeatedly applies the callable fn
to a sequence of elements from last to first. The elements are made of the tensors unpacked from elems
. The callable fn takes two tensors as arguments. The first argument is the accumulated value computed from the preceding invocation of fn. If initializer
is None, elems
must contain at least one element, and its first element is used as the initializer.
Suppose that elems
is unpacked into values
, a list of tensors. The shape of the result tensor is fn(initializer, values[0]).shape
.
fn
: The callable to be performed.elems
: A tensor that is unpacked into a sequence of tensors to apply fn
.initializer
: (optional) The initial value for the accumulator.parallel_iterations
: (optional) The number of iterations allowed to run in parallel.back_prop
: (optional) True enables support for back propagation.swap_memory
: (optional) True enables GPU-CPU memory swapping.name
: (optional) Name prefix for the returned tensors.A tensor resulting from applying fn
consecutively to the list of tensors unpacked from elems
, from last to first.
TypeError
: if fn
is not callable.Example:
elems = [1, 2, 3, 4, 5, 6] sum = foldr(lambda a, x: a + x, elems) # sum == 21
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/foldr