W3cubDocs

/TensorFlow Python

tf.keras.callbacks.ModelCheckpoint

Class ModelCheckpoint

Inherits From: Callback

Defined in tensorflow/python/keras/_impl/keras/callbacks.py.

Save the model after every epoch.

filepath can contain named formatting options, which will be filled the value of epoch and keys in logs (passed in on_epoch_end).

For example: if filepath is weights.{epoch:02d}-{val_loss:.2f}.hdf5, then the model checkpoints will be saved with the epoch number and the validation loss in the filename.

Arguments:

  • filepath: string, path to save the model file.
  • monitor: quantity to monitor.
  • verbose: verbosity mode, 0 or 1.
  • save_best_only: if save_best_only=True, the latest best model according to the quantity monitored will not be overwritten.
  • mode: one of {auto, min, max}. If save_best_only=True, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For val_acc, this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically inferred from the name of the monitored quantity.
  • save_weights_only: if True, then only the model's weights will be saved (model.save_weights(filepath)), else the full model is saved (model.save(filepath)).
  • period: Interval (number of epochs) between checkpoints.

Methods

__init__

__init__(
    filepath,
    monitor='val_loss',
    verbose=0,
    save_best_only=False,
    save_weights_only=False,
    mode='auto',
    period=1
)

Initialize self. See help(type(self)) for accurate signature.

on_batch_begin

on_batch_begin(
    batch,
    logs=None
)

on_batch_end

on_batch_end(
    batch,
    logs=None
)

on_epoch_begin

on_epoch_begin(
    epoch,
    logs=None
)

on_epoch_end

on_epoch_end(
    epoch,
    logs=None
)

on_train_begin

on_train_begin(logs=None)

on_train_end

on_train_end(logs=None)

set_model

set_model(model)

set_params

set_params(params)

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint