KerasRegressor
Defined in tensorflow/python/keras/_impl/keras/wrappers/scikit_learn.py.
Implementation of the scikit-learn regressor API for Keras.
__init____init__(
build_fn=None,
**sk_params
)
Initialize self. See help(type(self)) for accurate signature.
check_paramscheck_params(params)
Checks for user typos in params.
params: dictionary; the parameters to be checkedValueError: if any member of params is not a valid argument.filter_sk_paramsfilter_sk_params(
fn,
override=None
)
Filters sk_params and returns those in fn's arguments.
fn: arbitrary functionoverride: dictionary, values to override sk_params
res: dictionary containing variables in both sk_params and fn's arguments.fitfit(
x,
y,
**kwargs
)
Constructs a new model with build_fn & fit the model to (x, y).
x: array-like, shape (n_samples, n_features) Training samples where n_samples is the number of samples and n_features is the number of features.y: array-like, shape (n_samples,) or (n_samples, n_outputs) True labels for x.**kwargs: dictionary arguments Legal arguments are the arguments of Sequential.fit
history: object details about the training history at each epoch.get_paramsget_params(**params)
Gets parameters for this estimator.
**params: ignored (exists for API compatibility).Dictionary of parameter names mapped to their values.
predictpredict(
x,
**kwargs
)
Returns predictions for the given test data.
x: array-like, shape (n_samples, n_features) Test samples where n_samples is the number of samples and n_features is the number of features.**kwargs: dictionary arguments Legal arguments are the arguments of Sequential.predict.preds: array-like, shape (n_samples,) Predictions.scorescore(
x,
y,
**kwargs
)
Returns the mean loss on the given test data and labels.
x: array-like, shape (n_samples, n_features) Test samples where n_samples is the number of samples and n_features is the number of features.y: array-like, shape (n_samples,) True labels for x.**kwargs: dictionary arguments Legal arguments are the arguments of Sequential.evaluate.score: float Mean accuracy of predictions on x wrt. y.set_paramsset_params(**params)
Sets the parameters of this estimator.
**params: Dictionary of parameter names mapped to their values.self
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn/KerasRegressor