W3cubDocs

/TensorFlow Python

tf.losses.hinge_loss

tf.losses.hinge_loss(
    labels,
    logits,
    weights=1.0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)

Defined in tensorflow/python/ops/losses/losses_impl.py.

Adds a hinge loss to the training procedure.

Args:

  • labels: The ground truth output tensor. Its shape should match the shape of logits. The values of the tensor are expected to be 0.0 or 1.0.
  • logits: The logits, a float tensor.
  • weights: Optional Tensor whose rank is either 0, or the same rank as labels, and must be broadcastable to labels (i.e., all dimensions must be either 1, or the same as the corresponding losses dimension).
  • scope: The scope for the operations performed in computing the loss.
  • loss_collection: collection to which the loss will be added.
  • reduction: Type of reduction to apply to loss.

Returns:

Weighted loss float Tensor. If reduction is NONE, this has the same shape as labels; otherwise, it is scalar.

Raises:

  • ValueError: If the shapes of logits and labels don't match or if labels or logits is None.

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/losses/hinge_loss