W3cubDocs

/TensorFlow Python

tf.nn.local_response_normalization

Aliases:

  • tf.nn.local_response_normalization
  • tf.nn.lrn
tf.nn.local_response_normalization(
    input,
    depth_radius=5,
    bias=1,
    alpha=1,
    beta=0.5,
    name=None
)

Defined in tensorflow/python/ops/gen_nn_ops.py.

See the guide: Neural Network > Normalization

Local Response Normalization.

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius. In detail,

sqr_sum[a, b, c, d] =
    sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta

For details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012).

Args:

  • input: A Tensor. Must be one of the following types: half, bfloat16, float32. 4-D.
  • depth_radius: An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization window.
  • bias: An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).
  • alpha: An optional float. Defaults to 1. A scale factor, usually positive.
  • beta: An optional float. Defaults to 0.5. An exponent.
  • name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/nn/local_response_normalization