tf.nn.quantized_relu_x(
features,
max_value,
min_features,
max_features,
out_type=tf.quint8,
name=None
)
Defined in tensorflow/python/ops/gen_nn_ops.py.
See the guide: Neural Network > Candidate Sampling
Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
features: A Tensor. Must be one of the following types: qint8, quint8, qint32, qint16, quint16.max_value: A Tensor of type float32.min_features: A Tensor of type float32. The float value that the lowest quantized value represents.max_features: A Tensor of type float32. The float value that the highest quantized value represents.out_type: An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16. Defaults to tf.quint8.name: A name for the operation (optional).A tuple of Tensor objects (activations, min_activations, max_activations).
activations: A Tensor of type out_type.min_activations: A Tensor of type float32.max_activations: A Tensor of type float32.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/nn/quantized_relu_x