W3cubDocs

/TensorFlow Python

tf.profiler.write_op_log

tf.profiler.write_op_log(
    graph,
    log_dir,
    op_log=None,
    run_meta=None,
    add_trace=True
)

Defined in tensorflow/python/profiler/tfprof_logger.py.

Log provided 'op_log', and add additional model information below.

The API also assigns ops in tf.trainable_variables() an op type called '_trainable_variables'. The API also logs 'flops' statistics for ops with op.RegisterStatistics() defined. flops calculation depends on Tensor shapes defined in 'graph', which might not be complete. 'run_meta', if provided, completes the shape information with best effort.

Args:

  • graph: tf.Graph. If None and eager execution is not enabled, use default graph.
  • log_dir: directory to write the log file.
  • op_log: (Optional) OpLogProto proto to be written. If not provided, an new one is created.
  • run_meta: (Optional) RunMetadata proto that helps flops computation using run time shape information.
  • add_trace: Whether to add python code trace information. Used to support "code" view.

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/profiler/write_op_log