tf.random_uniform( shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None )
Defined in tensorflow/python/ops/random_ops.py
.
See the guide: Constants, Sequences, and Random Values > Random Tensors
Outputs random values from a uniform distribution.
The generated values follow a uniform distribution in the range [minval, maxval)
. The lower bound minval
is included in the range, while the upper bound maxval
is excluded.
For floats, the default range is [0, 1)
. For ints, at least maxval
must be specified explicitly.
In the integer case, the random integers are slightly biased unless maxval - minval
is an exact power of two. The bias is small for values of maxval - minval
significantly smaller than the range of the output (either 2**32
or 2**64
).
shape
: A 1-D integer Tensor or Python array. The shape of the output tensor.minval
: A 0-D Tensor or Python value of type dtype
. The lower bound on the range of random values to generate. Defaults to 0.maxval
: A 0-D Tensor or Python value of type dtype
. The upper bound on the range of random values to generate. Defaults to 1 if dtype
is floating point.dtype
: The type of the output: float16
, float32
, float64
, int32
, or int64
.seed
: A Python integer. Used to create a random seed for the distribution. See tf.set_random_seed
for behavior.name
: A name for the operation (optional).A tensor of the specified shape filled with random uniform values.
ValueError
: If dtype
is integral and maxval
is not specified.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/random_uniform