tf.rank(
input,
name=None
)
Defined in tensorflow/python/ops/array_ops.py.
See the guide: Tensor Transformations > Shapes and Shaping
Returns the rank of a tensor.
Returns a 0-D int32 Tensor representing the rank of input.
For example:
# shape of tensor 't' is [2, 2, 3] t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.rank(t) # 3
Note: The rank of a tensor is not the same as the rank of a matrix. The rank of a tensor is the number of indices required to uniquely select each element of the tensor. Rank is also known as "order", "degree", or "ndims."
input: A Tensor or SparseTensor.name: A name for the operation (optional).A Tensor of type int32.
Equivalent to np.ndim
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/rank