tf.linalg.eigvalsh
tf.self_adjoint_eigvals
tf.self_adjoint_eigvals( tensor, name=None )
Defined in tensorflow/python/ops/linalg_ops.py
.
See the guide: Math > Matrix Math Functions
Computes the eigenvalues of one or more self-adjoint matrices.
Note: If your program backpropagates through this function, you should replace it with a call to tf.self_adjoint_eig (possibly ignoring the second output) to avoid computing the eigen decomposition twice. This is because the eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See _SelfAdjointEigV2Grad in linalg_grad.py.
tensor
: Tensor
of shape [..., N, N]
.name
: string, optional name of the operation.e
: Eigenvalues. Shape is [..., N]
. The vector e[..., :]
contains the N
eigenvalues of tensor[..., :, :]
.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/self_adjoint_eigvals