tf.contrib.metrics.set_difference
tf.sets.set_difference
tf.sets.set_difference( a, b, aminusb=True, validate_indices=True )
Defined in tensorflow/python/ops/sets_impl.py
.
See the guide: Metrics (contrib) > Set Ops
Compute set difference of elements in last dimension of a
and b
.
All but the last dimension of a
and b
must match.
Example:
import tensorflow as tf import collections # Represent the following array of sets as a sparse tensor: # a = np.array([[{1, 2}, {3}], [{4}, {5, 6}]]) a = collections.OrderedDict([ ((0, 0, 0), 1), ((0, 0, 1), 2), ((0, 1, 0), 3), ((1, 0, 0), 4), ((1, 1, 0), 5), ((1, 1, 1), 6), ]) a = tf.SparseTensor(list(a.keys()), list(a.values()), dense_shape=[2, 2, 2]) # np.array([[{1, 3}, {2}], [{4, 5}, {5, 6, 7, 8}]]) b = collections.OrderedDict([ ((0, 0, 0), 1), ((0, 0, 1), 3), ((0, 1, 0), 2), ((1, 0, 0), 4), ((1, 0, 1), 5), ((1, 1, 0), 5), ((1, 1, 1), 6), ((1, 1, 2), 7), ((1, 1, 3), 8), ]) b = tf.SparseTensor(list(b.keys()), list(b.values()), dense_shape=[2, 2, 4]) # `set_difference` is applied to each aligned pair of sets. tf.sets.set_difference(a, b) # The result will be equivalent to either of: # # np.array([[{2}, {3}], [{}, {}]]) # # collections.OrderedDict([ # ((0, 0, 0), 2), # ((0, 1, 0), 3), # ])
a
: Tensor
or SparseTensor
of the same type as b
. If sparse, indices must be sorted in row-major order.b
: Tensor
or SparseTensor
of the same type as a
. If sparse, indices must be sorted in row-major order.aminusb
: Whether to subtract b
from a
, vs vice versa.validate_indices
: Whether to validate the order and range of sparse indices in a
and b
.A SparseTensor
whose shape is the same rank as a
and b
, and all but the last dimension the same. Elements along the last dimension contain the differences.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/sets/set_difference