tf.sparse_fill_empty_rows(
sp_input,
default_value,
name=None
)
Defined in tensorflow/python/ops/sparse_ops.py.
See the guide: Sparse Tensors > Manipulation
Fills empty rows in the input 2-D SparseTensor with a default value.
This op adds entries with the specified default_value at index [row, 0] for any row in the input that does not already have a value.
For example, suppose sp_input has shape [5, 6] and non-empty values:
[0, 1]: a [0, 3]: b [2, 0]: c [3, 1]: d
Rows 1 and 4 are empty, so the output will be of shape [5, 6] with values:
[0, 1]: a [0, 3]: b [1, 0]: default_value [2, 0]: c [3, 1]: d [4, 0]: default_value
Note that the input may have empty columns at the end, with no effect on this op.
The output SparseTensor will be in row-major order and will have the same shape as the input.
This op also returns an indicator vector such that
empty_row_indicator[i] = True iff row i was an empty row.
sp_input: A SparseTensor with shape [N, M].default_value: The value to fill for empty rows, with the same type as sp_input.
name: A name prefix for the returned tensors (optional)sp_ordered_output: A SparseTensor with shape [N, M], and with all empty rows filled in with default_value.empty_row_indicator: A bool vector of length N indicating whether each input row was empty.TypeError: If sp_input is not a SparseTensor.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/sparse_fill_empty_rows