tf.sparse_split(
keyword_required=KeywordRequired(),
sp_input=None,
num_split=None,
axis=None,
name=None,
split_dim=None
)
Defined in tensorflow/python/ops/sparse_ops.py.
See the guide: Sparse Tensors > Manipulation
Split a SparseTensor into num_split tensors along axis.
If the sp_input.dense_shape[axis] is not an integer multiple of num_split each slice starting from 0:shape[axis] % num_split gets extra one dimension. For example, if axis = 1 and num_split = 2 and the input is:
input_tensor = shape = [2, 7] [ a d e ] [b c ]
Graphically the output tensors are:
output_tensor[0] = [ a ] [b c ] output_tensor[1] = [ d e ] [ ]
keyword_required: Python 2 standin for * (temporary for argument reorder)sp_input: The SparseTensor to split.num_split: A Python integer. The number of ways to split.axis: A 0-D int32 Tensor. The dimension along which to split.name: A name for the operation (optional).split_dim: Deprecated old name for axis.num_split SparseTensor objects resulting from splitting value.
TypeError: If sp_input is not a SparseTensor.ValueError: If the deprecated split_dim and axis are both non None.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/sparse_split