tf.sparse_split( keyword_required=KeywordRequired(), sp_input=None, num_split=None, axis=None, name=None, split_dim=None )
Defined in tensorflow/python/ops/sparse_ops.py
.
See the guide: Sparse Tensors > Manipulation
Split a SparseTensor
into num_split
tensors along axis
.
If the sp_input.dense_shape[axis]
is not an integer multiple of num_split
each slice starting from 0:shape[axis] % num_split
gets extra one dimension. For example, if axis = 1
and num_split = 2
and the input is:
input_tensor = shape = [2, 7] [ a d e ] [b c ]
Graphically the output tensors are:
output_tensor[0] = [ a ] [b c ] output_tensor[1] = [ d e ] [ ]
keyword_required
: Python 2 standin for * (temporary for argument reorder)sp_input
: The SparseTensor
to split.num_split
: A Python integer. The number of ways to split.axis
: A 0-D int32
Tensor
. The dimension along which to split.name
: A name for the operation (optional).split_dim
: Deprecated old name for axis.num_split
SparseTensor
objects resulting from splitting value
.
TypeError
: If sp_input
is not a SparseTensor
.ValueError
: If the deprecated split_dim
and axis
are both non None.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/sparse_split