tf.sparse_to_dense(
sparse_indices,
output_shape,
sparse_values,
default_value=0,
validate_indices=True,
name=None
)
Defined in tensorflow/python/ops/sparse_ops.py.
See the guide: Sparse Tensors > Conversion
Converts a sparse representation into a dense tensor.
Builds an array dense with shape output_shape such that
# If sparse_indices is scalar dense[i] = (i == sparse_indices ? sparse_values : default_value) # If sparse_indices is a vector, then for each i dense[sparse_indices[i]] = sparse_values[i] # If sparse_indices is an n by d matrix, then for each i in [0, n) dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
All other values in dense are set to default_value. If sparse_values is a scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not contain any repeats. If validate_indices is True, these properties are checked during execution.
sparse_indices: A 0-D, 1-D, or 2-D Tensor of type int32 or int64. sparse_indices[i] contains the complete index where sparse_values[i] will be placed.output_shape: A 1-D Tensor of the same type as sparse_indices. Shape of the dense output tensor.sparse_values: A 0-D or 1-D Tensor. Values corresponding to each row of sparse_indices, or a scalar value to be used for all sparse indices.default_value: A 0-D Tensor of the same type as sparse_values. Value to set for indices not specified in sparse_indices. Defaults to zero.validate_indices: A boolean value. If True, indices are checked to make sure they are sorted in lexicographic order and that there are no repeats.name: A name for the operation (optional).Dense Tensor of shape output_shape. Has the same type as sparse_values.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/sparse_to_dense