tf.train.init_from_checkpoint(
ckpt_dir_or_file,
assignment_map
)
Defined in tensorflow/python/training/checkpoint_utils.py.
Initializes current variables with tensors loaded from given checkpoint.
Note: This overrides default initialization ops of specified variables and redefines dtype.
Assignment map supports following syntax:
'checkpoint_scope_name/': 'scope_name/' - will load all variables in current scope_name from checkpoint_scope_name with matching tensor names.'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name' - will initialize scope_name/variable_name variable from checkpoint_scope_name/some_other_variable.'scope_variable_name': variable - will initialize given tf.Variable object with tensor 'scope_variable_name' from the checkpoint.'scope_variable_name': list(variable) - will initialize list of partitioned variables with tensor 'scope_variable_name' from the checkpoint.'/': 'scope_name/' - will load all variables in current scope_name from checkpoint's root (e.g. no scope).Supports loading into partitioned variables, which are represented as '<variable>/part_<part #>'.
Example:
# Say, '/tmp/model.ckpt' has the following tensors:
# -- name='old_scope_1/var1', shape=[20, 2]
# -- name='old_scope_1/var2', shape=[50, 4]
# -- name='old_scope_2/var3', shape=[100, 100]
# Create new model's variables
with tf.variable_scope('new_scope_1'):
var1 = tf.get_variable('var1', shape=[20, 2],
initializer=tf.zeros_initializer())
with tf.variable_scope('new_scope_2'):
var2 = tf.get_variable('var2', shape=[50, 4],
initializer=tf.zeros_initializer())
# Partition into 5 variables along the first axis.
var3 = tf.get_variable(name='var3', shape=[100, 100],
initializer=tf.zeros_initializer(),
partitioner=lambda shape, dtype: [5, 1])
# Initialize all variables in `new_scope_1` from `old_scope_1`.
init_from_checkpoint('/tmp/model.ckpt', {'old_scope_1/', 'new_scope_1'})
# Use names to specify which variables to initialize from checkpoint.
init_from_checkpoint('/tmp/model.ckpt',
{'old_scope_1/var1': 'new_scope_1/var1',
'old_scope_1/var2': 'new_scope_2/var2'})
# Or use tf.Variable objects to identify what to initialize.
init_from_checkpoint('/tmp/model.ckpt',
{'old_scope_1/var1': var1,
'old_scope_1/var2': var2})
# Initialize partitioned variables using variable's name
init_from_checkpoint('/tmp/model.ckpt',
{'old_scope_2/var3': 'new_scope_2/var3'})
# Or specify the list of tf.Variable objects.
init_from_checkpoint('/tmp/model.ckpt',
{'old_scope_2/var3': var3._get_variable_list()})
ckpt_dir_or_file: Directory with checkpoints file or path to checkpoint.assignment_map: Dict, where keys are names of the variables in the checkpoint and values are current variables or names of current variables (in default graph).tf.errors.OpError: If missing checkpoints or tensors in checkpoints.ValueError: If missing variables in current graph.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/train/init_from_checkpoint