tf.train.maybe_batch_join(
tensors_list,
keep_input,
batch_size,
capacity=32,
enqueue_many=False,
shapes=None,
dynamic_pad=False,
allow_smaller_final_batch=False,
shared_name=None,
name=None
)
Defined in tensorflow/python/training/input.py.
See the guide: Inputs and Readers > Input pipeline
Runs a list of tensors to conditionally fill a queue to create batches.
See docstring in batch_join for more details.
tensors_list: A list of tuples or dictionaries of tensors to enqueue.keep_input: A bool Tensor. This tensor controls whether the input is added to the queue or not. If it is a scalar and evaluates True, then tensors are all added to the queue. If it is a vector and enqueue_many is True, then each example is added to the queue only if the corresponding value in keep_input is True. This tensor essentially acts as a filtering mechanism.batch_size: An integer. The new batch size pulled from the queue.capacity: An integer. The maximum number of elements in the queue.enqueue_many: Whether each tensor in tensor_list_list is a single example.shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for tensor_list_list[i].dynamic_pad: Boolean. Allow variable dimensions in input shapes. The given dimensions are padded upon dequeue so that tensors within a batch have the same shapes.allow_smaller_final_batch: (Optional) Boolean. If True, allow the final batch to be smaller if there are insufficient items left in the queue.shared_name: (Optional) If set, this queue will be shared under the given name across multiple sessions.name: (Optional) A name for the operations.A list or dictionary of tensors with the same number and types as tensors_list[i].
ValueError: If the shapes are not specified, and cannot be inferred from the elements of tensor_list_list.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/train/maybe_batch_join