W3cubDocs

/TensorFlow Python

tf.train.maybe_shuffle_batch_join

tf.train.maybe_shuffle_batch_join(
    tensors_list,
    batch_size,
    capacity,
    min_after_dequeue,
    keep_input,
    seed=None,
    enqueue_many=False,
    shapes=None,
    allow_smaller_final_batch=False,
    shared_name=None,
    name=None
)

Defined in tensorflow/python/training/input.py.

See the guide: Inputs and Readers > Input pipeline

Create batches by randomly shuffling conditionally-enqueued tensors.

See docstring in shuffle_batch_join for more details.

Args:

  • tensors_list: A list of tuples or dictionaries of tensors to enqueue.
  • batch_size: An integer. The new batch size pulled from the queue.
  • capacity: An integer. The maximum number of elements in the queue.
  • min_after_dequeue: Minimum number elements in the queue after a dequeue, used to ensure a level of mixing of elements.
  • keep_input: A bool Tensor. This tensor controls whether the input is added to the queue or not. If it is a scalar and evaluates True, then tensors are all added to the queue. If it is a vector and enqueue_many is True, then each example is added to the queue only if the corresponding value in keep_input is True. This tensor essentially acts as a filtering mechanism.
  • seed: Seed for the random shuffling within the queue.
  • enqueue_many: Whether each tensor in tensor_list_list is a single example.
  • shapes: (Optional) The shapes for each example. Defaults to the inferred shapes for tensors_list[i].
  • allow_smaller_final_batch: (Optional) Boolean. If True, allow the final batch to be smaller if there are insufficient items left in the queue.
  • shared_name: (optional). If set, this queue will be shared under the given name across multiple sessions.
  • name: (Optional) A name for the operations.

Returns:

A list or dictionary of tensors with the same number and types as tensors_list[i].

Raises:

  • ValueError: If the shapes are not specified, and cannot be inferred from the elements of tensors_list.

Eager Compatibility

Input pipelines based on Queues are not supported when eager execution is enabled. Please use the tf.data API to ingest data under eager execution.

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/train/maybe_shuffle_batch_join