tf.train.slice_input_producer(
tensor_list,
num_epochs=None,
shuffle=True,
seed=None,
capacity=32,
shared_name=None,
name=None
)
Defined in tensorflow/python/training/input.py.
See the guides: Inputs and Readers > Input pipeline, Reading data > Preloaded data
Produces a slice of each Tensor in tensor_list.
Implemented using a Queue -- a QueueRunner for the Queue is added to the current Graph's QUEUE_RUNNER collection.
tensor_list: A list of Tensor objects. Every Tensor in tensor_list must have the same size in the first dimension.num_epochs: An integer (optional). If specified, slice_input_producer produces each slice num_epochs times before generating an OutOfRange error. If not specified, slice_input_producer can cycle through the slices an unlimited number of times.shuffle: Boolean. If true, the integers are randomly shuffled within each epoch.seed: An integer (optional). Seed used if shuffle == True.capacity: An integer. Sets the queue capacity.shared_name: (optional). If set, this queue will be shared under the given name across multiple sessions.name: A name for the operations (optional).A list of tensors, one for each element of tensor_list. If the tensor in tensor_list has shape [N, a, b, .., z], then the corresponding output tensor will have shape [a, b, ..., z].
ValueError: if slice_input_producer produces nothing from tensor_list.Input pipelines based on Queues are not supported when eager execution is enabled. Please use the tf.data API to ingest data under eager execution.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/train/slice_input_producer