tf.train.slice_input_producer( tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None )
Defined in tensorflow/python/training/input.py
.
See the guides: Inputs and Readers > Input pipeline, Reading data > Preloaded data
Produces a slice of each Tensor
in tensor_list
.
Implemented using a Queue -- a QueueRunner
for the Queue is added to the current Graph
's QUEUE_RUNNER
collection.
tensor_list
: A list of Tensor
objects. Every Tensor
in tensor_list
must have the same size in the first dimension.num_epochs
: An integer (optional). If specified, slice_input_producer
produces each slice num_epochs
times before generating an OutOfRange
error. If not specified, slice_input_producer
can cycle through the slices an unlimited number of times.shuffle
: Boolean. If true, the integers are randomly shuffled within each epoch.seed
: An integer (optional). Seed used if shuffle == True.capacity
: An integer. Sets the queue capacity.shared_name
: (optional). If set, this queue will be shared under the given name across multiple sessions.name
: A name for the operations (optional).A list of tensors, one for each element of tensor_list
. If the tensor in tensor_list
has shape [N, a, b, .., z]
, then the corresponding output tensor will have shape [a, b, ..., z]
.
ValueError
: if slice_input_producer
produces nothing from tensor_list
.Input pipelines based on Queues are not supported when eager execution is enabled. Please use the tf.data
API to ingest data under eager execution.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/train/slice_input_producer