truncated_normal_initializer
Inherits From: Initializer
tf.initializers.truncated_normal
tf.keras.initializers.TruncatedNormal
tf.truncated_normal_initializer
Defined in tensorflow/python/ops/init_ops.py.
See the guide: Variables > Sharing Variables
Initializer that generates a truncated normal distribution.
These values are similar to values from a random_normal_initializer except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.
mean: a python scalar or a scalar tensor. Mean of the random values to generate.stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.seed: A Python integer. Used to create random seeds. See tf.set_random_seed for behavior.dtype: The data type. Only floating point types are supported.__init____init__(
mean=0.0,
stddev=1.0,
seed=None,
dtype=tf.float32
)
Initialize self. See help(type(self)) for accurate signature.
__call____call__(
shape,
dtype=None,
partition_info=None
)
Call self as a function.
from_configfrom_config(
cls,
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config)
config: A Python dictionary. It will typically be the output of get_config.An Initializer instance.
get_configget_config()
Returns the configuration of the initializer as a JSON-serializable dict.
A JSON-serializable Python dict.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/truncated_normal_initializer