Defined in header <algorithm> | ||
---|---|---|
Call signature | ||
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred > constexpr bool is_partitioned( I first, S last, Pred pred, Proj proj = {} ); | (1) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred > constexpr bool is_partitioned( R&& r, Pred pred, Proj proj = {} ); | (2) | (since C++20) |
true
if all elements in the range [
first
,
last
)
that satisfy the predicate pred
after projection appear before all elements that don't. Also returns true
if [
first
,
last
)
is empty.r
as the source range, as if using ranges::begin(r)
as first
and ranges::end(r)
as last
.The function-like entities described on this page are niebloids, that is:
In practice, they may be implemented as function objects, or with special compiler extensions.
first, last | - | iterator-sentinel pair denoting the range of elements to examine |
r | - | the range of elements to examine |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
true
if the range [
first
,
last
)
is empty or is partitioned by pred
, false
otherwise.
At most ranges::distance(first, last)
applications of pred
and proj
.
struct is_partitioned_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { for (; first != last; ++first) if (!std::invoke(pred, std::invoke(proj, *first))) break; for (; first != last; ++first) if (std::invoke(pred, std::invoke(proj, *first))) return false; return true; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate<std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr auto is_partitioned = is_partitioned_fn(); |
#include <algorithm> #include <array> #include <iostream> #include <numeric> #include <utility> int main() { std::array<int, 9> v; auto print = [&v](bool o) { for (int x : v) std::cout << x << ' '; std::cout << (o ? "=> " : "=> not ") << "partitioned\n"; }; auto is_even = [](int i) { return i % 2 == 0; }; std::iota(v.begin(), v.end(), 1); // or std::ranges::iota(v, 1); print(std::ranges::is_partitioned(v, is_even)); std::ranges::partition(v, is_even); print(std::ranges::is_partitioned(std::as_const(v), is_even)); std::ranges::reverse(v); print(std::ranges::is_partitioned(v.cbegin(), v.cend(), is_even)); print(std::ranges::is_partitioned(v.crbegin(), v.crend(), is_even)); }
Output:
1 2 3 4 5 6 7 8 9 => not partitioned 2 4 6 8 5 3 7 1 9 => partitioned 9 1 7 3 5 8 6 4 2 => not partitioned 9 1 7 3 5 8 6 4 2 => partitioned
(C++20) | divides a range of elements into two groups (niebloid) |
(C++20) | locates the partition point of a partitioned range (niebloid) |
(C++11) | determines if the range is partitioned by the given predicate (function template) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/algorithm/ranges/is_partitioned