decltype specifier

Inspects the declared type of an entity or the type and value category of an expression.


decltype ( entity ) (1) (since C++11)
decltype ( expression ) (2) (since C++11)


1) If the argument is an unparenthesized id-expression or an unparenthesized class member access expression, then decltype yields the type of the entity named by this expression. If there is no such entity, or if the argument names a set of overloaded functions, the program is ill-formed.

If the argument is an unparenthesized id-expression naming a structured binding, then decltype yields the referenced type (described in the specification of the structured binding declaration).

(since C++17)

If the argument is an unparenthesized id-expression naming a non-type template parameter, then decltype yields the type of the template parameter (after performing any necessary type deduction if the template parameter is declared with a placeholder type). The type is non-const even if the entity is a template parameter object (which is a const object).

(since C++20)
2) If the argument is any other expression of type T, and
a) if the value category of expression is xvalue, then decltype yields T&&;
b) if the value category of expression is lvalue, then decltype yields T&;
c) if the value category of expression is prvalue, then decltype yields T.

If expression is a function call which returns a prvalue of class type or is a comma expression whose right operand is such a function call, a temporary object is not introduced for that prvalue.

(until C++17)

If expression is a prvalue other than a (possibly parenthesized) immediate invocation (since C++20), a temporary object is not materialized from that prvalue: such prvalue has no result object.

(since C++17)
Because no temporary object is created, the type need not be complete or have an available destructor, and can be abstract. This rule doesn't apply to sub-expressions: in decltype(f(g())), g() must have a complete type, but f() need not.

Note that if the name of an object is parenthesized, it is treated as an ordinary lvalue expression, thus decltype(x) and decltype((x)) are often different types.

decltype is useful when declaring types that are difficult or impossible to declare using standard notation, like lambda-related types or types that depend on template parameters.


Feature-test macro Value Std Comment
__cpp_decltype 200707L (C++11) decltype




#include <cassert>
#include <iostream>
#include <type_traits>
struct A { double x; };
const A* a;
decltype(a->x) y;       // type of y is double (declared type)
decltype((a->x)) z = y; // type of z is const double& (lvalue expression)
template<typename T, typename U>
auto add(T t, U u) -> decltype(t + u) // return type depends on template parameters
                                      // return type can be deduced since C++14
    return t + u;
const int& getRef(const int* p) { return *p; }
static_assert(std::is_same_v<decltype(getRef), const int&(const int*)>);
auto getRefFwdBad(const int* p) { return getRef(p); }
static_assert(std::is_same_v<decltype(getRefFwdBad), int(const int*)>,
    "Just returning auto isn't perfect forwarding.");
decltype(auto) getRefFwdGood(const int* p) { return getRef(p); }
static_assert(std::is_same_v<decltype(getRefFwdGood), const int&(const int*)>,
    "Returning decltype(auto) perfectly forwards the return type.");
// Alternatively:
auto getRefFwdGood1(const int* p) -> decltype(getRef(p)) { return getRef(p); }
static_assert(std::is_same_v<decltype(getRefFwdGood1), const int&(const int*)>,
    "Returning decltype(return expression) also perfectly forwards the return type.");
int main()
    int i = 33;
    decltype(i) j = i * 2;
    static_assert(std::is_same_v<decltype(i), decltype(j)>);
    assert(i == 33 && 66 == j);
    auto f = [i](int a, int b) -> int { return a * b + i; };
    auto h = [i](int a, int b) -> int { return a * b + i; };
    static_assert(!std::is_same_v<decltype(f), decltype(h)>,
        "The type of a lambda function is unique and unnamed");
    decltype(f) g = f;
    std::cout << f(3, 3) << ' ' << g(3, 3) << '\n';


42 42

See also

auto specifier (C++11) specifies a type deduced from an expression
obtains a reference to its argument for use in unevaluated context
(function template)
checks if two types are the same
(class template)

© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.