Defined in header <memory> | ||
---|---|---|
template< class InputIt, class Size, class NoThrowForwardIt > NoThrowForwardIt uninitialized_copy_n( InputIt first, Size count, NoThrowForwardIt d_first ); | (1) | (since C++11) |
template< class ExecutionPolicy, class ForwardIt, class Size, class NoThrowForwardIt > NoThrowForwardIt uninitialized_copy_n( ExecutionPolicy&& policy, ForwardIt first, Size count, NoThrowForwardIt d_first ); | (2) | (since C++17) |
count
elements from a range beginning at first
to an uninitialized memory area beginning at d_first
as if byfor (; n > 0; ++d_first, (void) ++first, --n)
::new (static_cast<void*>(std::addressof(*d_first)))
typename std::iterator_traits<NoThrowForwardIt>::value_type(*first);
If | (since C++20) |
policy
. This overload does not participate in overload resolution unless
| (until C++20) |
| (since C++20) |
first | - | the beginning of the range of the elements to copy |
count | - | the number of elements to copy |
d_first | - | the beginning of the destination range |
policy | - | the execution policy to use. See execution policy for details. |
Type requirements | ||
-InputIt must meet the requirements of LegacyInputIterator. |
||
-ForwardIt must meet the requirements of LegacyForwardIterator. |
||
-NoThrowForwardIt must meet the requirements of LegacyForwardIterator. |
||
-No increment, assignment, comparison, or indirection through valid instances of NoThrowForwardIt may throw exceptions. |
Iterator to the element past the last element copied.
Linear in count
.
The overload with a template parameter named ExecutionPolicy
reports errors as follows:
ExecutionPolicy
is one of the standard policies, std::terminate
is called. For any other ExecutionPolicy
, the behavior is implementation-defined. std::bad_alloc
is thrown. template<class InputIt, class Size, class NoThrowForwardIt> NoThrowForwardIt uninitialized_copy_n(InputIt first, Size count, NoThrowForwardIt d_first) { using T = typename std::iterator_traits<NoThrowForwardIt>::value_type; NoThrowForwardIt current = d_first; try { for (; count > 0; ++first, (void) ++current, --count) ::new (static_cast<void*>(std::addressof(*current))) T(*first); } catch (...) { for (; d_first != current; ++d_first) d_first->~T(); throw; } return current; } |
#include <algorithm> #include <iostream> #include <memory> #include <string> #include <tuple> #include <vector> int main() { std::vector<std::string> v = {"This", "is", "an", "example"}; std::string* p; std::size_t sz; std::tie(p, sz) = std::get_temporary_buffer<std::string>(v.size()); sz = std::min(sz, v.size()); std::uninitialized_copy_n(v.begin(), sz, p); for (std::string* i = p; i != p + sz; ++i) { std::cout << *i << ' '; i->~basic_string<char>(); } std::cout << '\n'; std::return_temporary_buffer(p); }
Possible output:
This is an example
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 2433 | C++11 | this algorithm might be hijacked by overloaded operator& | uses std::addressof |
LWG 3870 | C++20 | this algorithm might create objects on a const storage | kept disallowed |
copies a range of objects to an uninitialized area of memory (function template) |
|
(C++20) | copies a number of objects to an uninitialized area of memory (niebloid) |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/memory/uninitialized_copy_n