Defined in header <cmath> | ||
|---|---|---|
| (1) | ||
float assoc_legendre ( unsigned int n, unsigned int m, float x ); double assoc_legendre ( unsigned int n, unsigned int m, double x ); long double assoc_legendre ( unsigned int n, unsigned int m, long double x ); | (since C++17) (until C++23) | |
/* floating-point-type */ assoc_legendre( unsigned int n, unsigned int m,
/* floating-point-type */ x );
| (since C++23) | |
float assoc_legendref( unsigned int n, unsigned int m, float x ); | (2) | (since C++17) |
long double assoc_legendrel( unsigned int n, unsigned int m, long double x ); | (3) | (since C++17) |
| Additional overloads | ||
Defined in header <cmath> | ||
template< class Integer > double assoc_legendre ( unsigned int n, unsigned int m, Integer x ); | (A) | (since C++17) |
n, order m, and argument x. The library provides overloads of std::assoc_legendre for all cv-unqualified floating-point types as the type of the parameter x. (since C++23)
double
| n | - | the degree of the polynomial, an unsigned integer value |
| m | - | the order of the polynomial, an unsigned integer value |
| x | - | the argument, a floating-point or integer value |
x, that is \((1 - x^2) ^ {m/2} \: \frac{ \mathsf{d} ^ m}{ \mathsf{d}x ^ m} \, \mathsf{P}_n(x)\)(1-x2std::legendre(n, x)). Note that the Condon-Shortley phase term \((-1)^m\)(-1)m
is omitted from this definition.
Errors may be reported as specified in math_errhandling.
n is greater or equal to 128, the behavior is implementation-defined Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.
An implementation of this function is also available in boost.math as boost::math::legendre_p, except that the boost.math definition includes the Condon-Shortley phase term.
The first few associated Legendre polynomials are:
| Function | Polynomial |
|---|---|
| assoc_legendre(0, 0, x) | 1 |
| assoc_legendre(1, 0, x) | x |
| assoc_legendre(1, 1, x) | (1 - x2 )1/2 |
| assoc_legendre(2, 0, x) | 1/2(3x2 - 1) |
| assoc_legendre(2, 1, x) | 3x(1 - x2 )1/2 |
| assoc_legendre(2, 2, x) | 3(1 - x2 ) |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::assoc_legendre(int_num1, int_num2, num) has the same effect as std::assoc_legendre(int_num1, int_num2, static_cast<double>(num)).
#include <cmath>
#include <iostream>
double P20(double x)
{
return 0.5 * (3 * x * x - 1);
}
double P21(double x)
{
return 3.0 * x * std::sqrt(1 - x * x);
}
double P22(double x)
{
return 3 * (1 - x * x);
}
int main()
{
// spot-checks
std::cout << std::assoc_legendre(2, 0, 0.5) << '=' << P20(0.5) << '\n'
<< std::assoc_legendre(2, 1, 0.5) << '=' << P21(0.5) << '\n'
<< std::assoc_legendre(2, 2, 0.5) << '=' << P22(0.5) << '\n';
}Output:
-0.125=-0.125 1.29904=1.29904 2.25=2.25
|
(C++17)(C++17)(C++17) | Legendre polynomials (function) |
| Weisstein, Eric W. "Associated Legendre Polynomial." From MathWorld — A Wolfram Web Resource. |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/special_functions/assoc_legendre