W3cubDocs

/Eigen3

Eigen::IncompleteLUT

template<typename _Scalar, typename _StorageIndex = int>
class Eigen::IncompleteLUT< _Scalar, _StorageIndex >

Incomplete LU factorization with dual-threshold strategy.

This class follows the sparse solver concept .

During the numerical factorization, two dropping rules are used : 1) any element whose magnitude is less than some tolerance is dropped. This tolerance is obtained by multiplying the input tolerance droptol by the average magnitude of all the original elements in the current row. 2) After the elimination of the row, only the fill largest elements in the L part and the fill largest elements in the U part are kept (in addition to the diagonal element ). Note that fill is computed from the input parameter fillfactor which is used the ratio to control the fill_in relatively to the initial number of nonzero elements.

The two extreme cases are when droptol=0 (to keep all the fill*2 largest elements) and when fill=n/2 with droptol being different to zero.

References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.

NOTE : The following implementation is derived from the ILUT implementation in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota released under the terms of the GNU LGPL: http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html alternatively, on GMANE: http://comments.gmane.org/gmane.comp.lib.eigen/3302

struct keep_diag
template<typename MatrixType >
IncompleteLUT & compute (const MatrixType &amat)
ComputationInfo info () const
Reports whether previous computation was successful. More...
void setDroptol (const RealScalar &droptol)
void setFillfactor (int fillfactor)
- Public Member Functions inherited from Eigen::SparseSolverBase< IncompleteLUT< _Scalar, int > >
const Solve< IncompleteLUT< _Scalar, int >, Rhs > solve (const MatrixBase< Rhs > &b) const
const Solve< IncompleteLUT< _Scalar, int >, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
SparseSolverBase ()

compute()

template<typename _Scalar , typename _StorageIndex = int>
template<typename MatrixType >
IncompleteLUT& Eigen::IncompleteLUT< _Scalar, _StorageIndex >::compute ( const MatrixType & amat )
inline

Compute an incomplete LU factorization with dual threshold on the matrix mat No pivoting is done in this version

info()

template<typename _Scalar , typename _StorageIndex = int>
ComputationInfo Eigen::IncompleteLUT< _Scalar, _StorageIndex >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was successful, NumericalIssue if the matrix.appears to be negative.

setDroptol()

template<typename Scalar , typename StorageIndex >
void Eigen::IncompleteLUT< Scalar, StorageIndex >::setDroptol ( const RealScalar & droptol )

Set control parameter droptol

Parameters
droptol Drop any element whose magnitude is less than this tolerance

setFillfactor()

template<typename Scalar , typename StorageIndex >
void Eigen::IncompleteLUT< Scalar, StorageIndex >::setFillfactor ( int fillfactor )

Set control parameter fillfactor

Parameters
fillfactor This is used to compute the number fill_in of largest elements to keep on each row.

The documentation for this class was generated from the following file:

© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1IncompleteLUT.html