Base class for all dense matrices, vectors, and expressions.
This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.
Note that some methods are defined in other modules such as the LU module LU module for all functions related to matrix inversions.
Derived | is the derived type, e.g. a matrix type, or an expression, etc. |
When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.
template<typename Derived> void printFirstRow(const Eigen::MatrixBase<Derived>& x) { cout << x.row(0) << endl; }
This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN
.
const MatrixFunctionReturnValue< Derived > | acosh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::acosh . More... |
|
const AdjointReturnType | adjoint () const |
void | adjointInPlace () |
template<typename EssentialPart > | |
void | applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename EssentialPart > | |
void | applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename OtherDerived > | |
void | applyOnTheLeft (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
template<typename OtherDerived > | |
void | applyOnTheRight (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
ArrayWrapper< Derived > | array () |
const ArrayWrapper< const Derived > | array () const |
const DiagonalWrapper< const Derived > | asDiagonal () const |
const MatrixFunctionReturnValue< Derived > | asinh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic sine use ArrayBase::asinh . More... |
|
const MatrixFunctionReturnValue< Derived > | atanh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::atanh . More... |
|
BDCSVD< PlainObject > | bdcSvd (unsigned int computationOptions=0) const |
RealScalar | blueNorm () const |
const ColPivHouseholderQR< PlainObject > | colPivHouseholderQr () const |
const CompleteOrthogonalDecomposition< PlainObject > | completeOrthogonalDecomposition () const |
template<typename ResultType > | |
void | computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
template<typename ResultType > | |
void | computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
const MatrixFunctionReturnValue< Derived > | cos () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise cosine use ArrayBase::cos . More... |
|
const MatrixFunctionReturnValue< Derived > | cosh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic cosine use ArrayBase::cosh . More... |
|
template<typename OtherDerived > | |
PlainObject | cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
PlainObject | cross3 (const MatrixBase< OtherDerived > &other) const |
Scalar | determinant () const |
DiagonalReturnType | diagonal () |
ConstDiagonalReturnType | diagonal () const |
DiagonalDynamicIndexReturnType | diagonal (Index index) |
ConstDiagonalDynamicIndexReturnType | diagonal (Index index) const |
Index | diagonalSize () const |
template<typename OtherDerived > | |
ScalarBinaryOpTraits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType | dot (const MatrixBase< OtherDerived > &other) const |
EigenvaluesReturnType | eigenvalues () const |
Computes the eigenvalues of a matrix. More... |
|
Matrix< Scalar, 3, 1 > | eulerAngles (Index a0, Index a1, Index a2) const |
const MatrixExponentialReturnValue< Derived > | exp () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise exponential use ArrayBase::exp . More... |
|
Derived & | forceAlignedAccess () |
const Derived & | forceAlignedAccess () const |
template<bool Enable> | |
internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type | forceAlignedAccessIf () |
template<bool Enable> | |
internal::add_const_on_value_type< typename internal::conditional< Enable, ForceAlignedAccess< Derived >, Derived & >::type >::type | forceAlignedAccessIf () const |
const FullPivHouseholderQR< PlainObject > | fullPivHouseholderQr () const |
const FullPivLU< PlainObject > | fullPivLu () const |
const HNormalizedReturnType | hnormalized () const |
homogeneous normalization More... |
|
HomogeneousReturnType | homogeneous () const |
const HouseholderQR< PlainObject > | householderQr () const |
RealScalar | hypotNorm () const |
const Inverse< Derived > | inverse () const |
bool | isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
JacobiSVD< PlainObject > | jacobiSvd (unsigned int computationOptions=0) const |
template<typename OtherDerived > | |
const Product< Derived, OtherDerived, LazyProduct > | lazyProduct (const MatrixBase< OtherDerived > &other) const |
const LDLT< PlainObject > | ldlt () const |
const LLT< PlainObject > | llt () const |
const MatrixLogarithmReturnValue< Derived > | log () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise logarithm use ArrayBase::log . More... |
|
template<int p> | |
RealScalar | lpNorm () const |
const PartialPivLU< PlainObject > | lu () const |
template<typename EssentialPart > | |
void | makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const |
void | makeHouseholderInPlace (Scalar &tau, RealScalar &beta) |
const MatrixFunctionReturnValue< Derived > | matrixFunction (StemFunction f) const |
Helper function for the unsupported MatrixFunctions module. |
|
NoAlias< Derived, Eigen::MatrixBase > | noalias () |
RealScalar | norm () const |
void | normalize () |
const PlainObject | normalized () const |
template<typename OtherDerived > | |
bool | operator!= (const MatrixBase< OtherDerived > &other) const |
template<typename DiagonalDerived > | |
const Product< Derived, DiagonalDerived, LazyProduct > | operator* (const DiagonalBase< DiagonalDerived > &diagonal) const |
template<typename OtherDerived > | |
const Product< Derived, OtherDerived > | operator* (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
Derived & | operator*= (const EigenBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator+= (const MatrixBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator-= (const MatrixBase< OtherDerived > &other) |
Derived & | operator= (const MatrixBase &other) |
template<typename OtherDerived > | |
bool | operator== (const MatrixBase< OtherDerived > &other) const |
RealScalar | operatorNorm () const |
Computes the L2 operator norm. More... |
|
const PartialPivLU< PlainObject > | partialPivLu () const |
const MatrixPowerReturnValue< Derived > | pow (const RealScalar &p) const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p use ArrayBase::pow . More... |
|
const MatrixComplexPowerReturnValue< Derived > | pow (const std::complex< RealScalar > &p) const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p use ArrayBase::pow . More... |
|
template<unsigned int UpLo> | |
MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type | selfadjointView () |
template<unsigned int UpLo> | |
MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type | selfadjointView () const |
Derived & | setIdentity () |
Derived & | setIdentity (Index rows, Index cols) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this. More... |
|
Derived & | setUnit (Index i) |
Set the coefficients of *this to the i-th unit (basis) vector. More... |
|
Derived & | setUnit (Index newSize, Index i) |
Resizes to the given newSize, and writes the i-th unit (basis) vector into *this. More... |
|
const MatrixFunctionReturnValue< Derived > | sin () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise sine use ArrayBase::sin . More... |
|
const MatrixFunctionReturnValue< Derived > | sinh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic sine use ArrayBase::sinh . More... |
|
const SparseView< Derived > | sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const |
const MatrixSquareRootReturnValue< Derived > | sqrt () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise square root use ArrayBase::sqrt . More... |
|
RealScalar | squaredNorm () const |
RealScalar | stableNorm () const |
void | stableNormalize () |
const PlainObject | stableNormalized () const |
Scalar | trace () const |
template<unsigned int Mode> | |
MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type | triangularView () |
template<unsigned int Mode> | |
MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type | triangularView () const |
PlainObject | unitOrthogonal (void) const |
Public Member Functions inherited from Eigen::DenseBase< Derived > | |
bool | all () const |
bool | allFinite () const |
bool | any () const |
iterator | begin () |
const_iterator | begin () const |
const_iterator | cbegin () const |
const_iterator | cend () const |
ColwiseReturnType | colwise () |
ConstColwiseReturnType | colwise () const |
Index | count () const |
iterator | end () |
const_iterator | end () const |
EvalReturnType | eval () const |
void | fill (const Scalar &value) |
template<unsigned int Added, unsigned int Removed> | |
EIGEN_DEPRECATED const Derived & | flagged () const |
const WithFormat< Derived > | format (const IOFormat &fmt) const |
bool | hasNaN () const |
EIGEN_CONSTEXPR Index | innerSize () const |
template<typename OtherDerived > | |
bool | isApprox (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isApproxToConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | isMuchSmallerThan (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename Derived > | |
bool | isMuchSmallerThan (const typename NumTraits< Scalar >::Real &other, const RealScalar &prec) const |
bool | isOnes (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isZero (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
EIGEN_DEPRECATED Derived & | lazyAssign (const DenseBase< OtherDerived > &other) |
template<int NaNPropagation> | |
internal::traits< Derived >::Scalar | maxCoeff () const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | maxCoeff (IndexType *index) const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | maxCoeff (IndexType *row, IndexType *col) const |
Scalar | mean () const |
template<int NaNPropagation> | |
internal::traits< Derived >::Scalar | minCoeff () const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | minCoeff (IndexType *index) const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | minCoeff (IndexType *row, IndexType *col) const |
const NestByValue< Derived > | nestByValue () const |
EIGEN_CONSTEXPR Index | nonZeros () const |
template<typename OtherDerived > | |
CommaInitializer< Derived > | operator<< (const DenseBase< OtherDerived > &other) |
CommaInitializer< Derived > | operator<< (const Scalar &s) |
Derived & | operator= (const DenseBase &other) |
template<typename OtherDerived > | |
Derived & | operator= (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator= (const EigenBase< OtherDerived > &other) |
Copies the generic expression other into *this. More... |
|
EIGEN_CONSTEXPR Index | outerSize () const |
Scalar | prod () const |
template<typename Func > | |
internal::traits< Derived >::Scalar | redux (const Func &func) const |
template<int RowFactor, int ColFactor> | |
const Replicate< Derived, RowFactor, ColFactor > | replicate () const |
const Replicate< Derived, Dynamic, Dynamic > | replicate (Index rowFactor, Index colFactor) const |
void | resize (Index newSize) |
void | resize (Index rows, Index cols) |
ReverseReturnType | reverse () |
ConstReverseReturnType | reverse () const |
void | reverseInPlace () |
RowwiseReturnType | rowwise () |
ConstRowwiseReturnType | rowwise () const |
template<typename ThenDerived , typename ElseDerived > | |
const Select< Derived, ThenDerived, ElseDerived > | select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const |
template<typename ThenDerived > | |
const Select< Derived, ThenDerived, typename ThenDerived::ConstantReturnType > | select (const DenseBase< ThenDerived > &thenMatrix, const typename ThenDerived::Scalar &elseScalar) const |
template<typename ElseDerived > | |
const Select< Derived, typename ElseDerived::ConstantReturnType, ElseDerived > | select (const typename ElseDerived::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const |
Derived & | setConstant (const Scalar &value) |
Derived & | setLinSpaced (const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... |
|
Derived & | setLinSpaced (Index size, const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... |
|
Derived & | setOnes () |
Derived & | setRandom () |
Derived & | setZero () |
Scalar | sum () const |
template<typename OtherDerived > | |
void | swap (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
void | swap (PlainObjectBase< OtherDerived > &other) |
TransposeReturnType | transpose () |
ConstTransposeReturnType | transpose () const |
void | transposeInPlace () |
CoeffReturnType | value () const |
template<typename Visitor > | |
void | visit (Visitor &func) const |
Public Member Functions inherited from Eigen::DenseCoeffsBase< Derived, DirectWriteAccessors > | |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | colStride () const EIGEN_NOEXCEPT |
Derived & | derived () |
const Derived & | derived () const |
EIGEN_CONSTEXPR Index | innerStride () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | outerStride () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | rowStride () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
Public Member Functions inherited from Eigen::DenseCoeffsBase< Derived, WriteAccessors > | |
Scalar & | coeffRef (Index index) |
Scalar & | coeffRef (Index row, Index col) |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
Derived & | derived () |
const Derived & | derived () const |
Scalar & | operator() (Index index) |
Scalar & | operator() (Index row, Index col) |
Scalar & | operator[] (Index index) |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
Scalar & | w () |
Scalar & | x () |
Scalar & | y () |
Scalar & | z () |
Public Member Functions inherited from Eigen::DenseCoeffsBase< Derived, ReadOnlyAccessors > | |
CoeffReturnType | coeff (Index index) const |
CoeffReturnType | coeff (Index row, Index col) const |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
Derived & | derived () |
const Derived & | derived () const |
CoeffReturnType | operator() (Index index) const |
CoeffReturnType | operator() (Index row, Index col) const |
CoeffReturnType | operator[] (Index index) const |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
CoeffReturnType | w () const |
CoeffReturnType | x () const |
CoeffReturnType | y () const |
CoeffReturnType | z () const |
Public Member Functions inherited from Eigen::EigenBase< Derived > | |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
Derived & | derived () |
const Derived & | derived () const |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
static const IdentityReturnType | Identity () |
static const IdentityReturnType | Identity (Index rows, Index cols) |
static const BasisReturnType | Unit (Index i) |
static const BasisReturnType | Unit (Index size, Index i) |
static const BasisReturnType | UnitW () |
static const BasisReturnType | UnitX () |
static const BasisReturnType | UnitY () |
static const BasisReturnType | UnitZ () |
Static Public Member Functions inherited from Eigen::DenseBase< Derived > | |
static const ConstantReturnType | Constant (const Scalar &value) |
static const ConstantReturnType | Constant (Index rows, Index cols, const Scalar &value) |
static const ConstantReturnType | Constant (Index size, const Scalar &value) |
static const RandomAccessLinSpacedReturnType | LinSpaced (const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... |
|
static const RandomAccessLinSpacedReturnType | LinSpaced (Index size, const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... |
|
static EIGEN_DEPRECATED const RandomAccessLinSpacedReturnType | LinSpaced (Sequential_t, const Scalar &low, const Scalar &high) |
static EIGEN_DEPRECATED const RandomAccessLinSpacedReturnType | LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high) |
template<typename CustomNullaryOp > | |
static const CwiseNullaryOp< CustomNullaryOp, PlainObject > | NullaryExpr (const CustomNullaryOp &func) |
template<typename CustomNullaryOp > | |
static const CwiseNullaryOp< CustomNullaryOp, PlainObject > | NullaryExpr (Index rows, Index cols, const CustomNullaryOp &func) |
template<typename CustomNullaryOp > | |
static const CwiseNullaryOp< CustomNullaryOp, PlainObject > | NullaryExpr (Index size, const CustomNullaryOp &func) |
static const ConstantReturnType | Ones () |
static const ConstantReturnType | Ones (Index rows, Index cols) |
static const ConstantReturnType | Ones (Index size) |
static const RandomReturnType | Random () |
static const RandomReturnType | Random (Index rows, Index cols) |
static const RandomReturnType | Random (Index size) |
static const ConstantReturnType | Zero () |
static const ConstantReturnType | Zero (Index rows, Index cols) |
static const ConstantReturnType | Zero (Index size) |
Public Types inherited from Eigen::DenseBase< Derived > | |
enum | { RowsAtCompileTime , ColsAtCompileTime , SizeAtCompileTime , MaxRowsAtCompileTime , MaxColsAtCompileTime , MaxSizeAtCompileTime , IsVectorAtCompileTime , NumDimensions , Flags , IsRowMajor , InnerSizeAtCompileTime , InnerStrideAtCompileTime , OuterStrideAtCompileTime } |
typedef random_access_iterator_type | const_iterator |
typedef random_access_iterator_type | iterator |
typedef Array< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTime > | PlainArray |
typedef Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTime > | PlainMatrix |
typedef internal::conditional< internal::is_same< typename internal::traits< Derived >::XprKind, MatrixXpr >::value, PlainMatrix, PlainArray >::type | PlainObject |
The plain matrix or array type corresponding to this expression. More... |
|
typedef internal::traits< Derived >::Scalar | Scalar |
typedef internal::traits< Derived >::StorageIndex | StorageIndex |
The type used to store indices. More... |
|
typedef Scalar | value_type |
Public Types inherited from Eigen::EigenBase< Derived > | |
typedef Eigen::Index | Index |
The interface type of indices. More... |
|
Protected Member Functions inherited from Eigen::DenseBase< Derived > | |
DenseBase () | |
Related Functions inherited from Eigen::DenseBase< Derived > | |
template<typename Derived > | |
std::ostream & | operator<< (std::ostream &s, const DenseBase< Derived > &m) |
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::acosh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::acosh .
*this
.
| inline |
Example:
Matrix2cf m = Matrix2cf::Random(); cout << "Here is the 2x2 complex matrix m:" << endl << m << endl; cout << "Here is the adjoint of m:" << endl << m.adjoint() << endl;
Output:
Here is the 2x2 complex matrix m: (-0.211,0.68) (-0.605,0.823) (0.597,0.566) (0.536,-0.33) Here is the adjoint of m: (-0.211,-0.68) (0.597,-0.566) (-0.605,-0.823) (0.536,0.33)
m = m.adjoint(); // bug!!! caused by aliasing effect
Instead, use the adjointInPlace() method: m.adjointInPlace();which gives Eigen good opportunities for optimization, or alternatively you can also do:
m = m.adjoint().eval();
| inline |
This is the "in place" version of adjoint(): it replaces *this
by its own transpose. Thus, doing
m.adjointInPlace();
has the same effect on m as doing
m = m.adjoint().eval();
and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.
Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().
*this
must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the left to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->cols() entries |
void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the right to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->rows() entries |
| inline |
replaces *this
by other * *this
.
Example:
Matrix3f A = Matrix3f::Random(3,3), B; B << 0,1,0, 0,0,1, 1,0,0; cout << "At start, A = " << endl << A << endl; A.applyOnTheLeft(B); cout << "After applyOnTheLeft, A = " << endl << A << endl;
Output:
At start, A = 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 After applyOnTheLeft, A = -0.211 0.823 0.536 0.566 -0.605 -0.444 0.68 0.597 -0.33
| inline |
This is defined in the Jacobi module.
#include <Eigen/Jacobi>
Applies the rotation in the plane j to the rows p and q of *this
, i.e., it computes B = J * B, with \( B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \).
| inline |
replaces *this
by *this
* other. It is equivalent to MatrixBase::operator*=().
Example:
Matrix3f A = Matrix3f::Random(3,3), B; B << 0,1,0, 0,0,1, 1,0,0; cout << "At start, A = " << endl << A << endl; A *= B; cout << "After A *= B, A = " << endl << A << endl; A.applyOnTheRight(B); // equivalent to A *= B cout << "After applyOnTheRight, A = " << endl << A << endl;
Output:
At start, A = 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 After A *= B, A = -0.33 0.68 0.597 0.536 -0.211 0.823 -0.444 0.566 -0.605 After applyOnTheRight, A = 0.597 -0.33 0.68 0.823 0.536 -0.211 -0.605 -0.444 0.566
| inline |
| inline |
| inline |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Example:
cout << Matrix3i(Vector3i(2,5,6).asDiagonal()) << endl;
Output:
2 0 0 0 5 0 0 0 6
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::asinh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic sine use ArrayBase::asinh .
*this
. const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::atanh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::atanh .
*this
.
| inline |
This is defined in the SVD module.
#include <Eigen/SVD>
*this
computed by Divide & Conquer algorithm
| inline |
*this
using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.
| inline |
*this
.
| inline |
*this
.
| inline |
This is defined in the LU module.
#include <Eigen/LU>
Computation of matrix inverse and determinant, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
inverse | Reference to the matrix in which to store the inverse. |
determinant | Reference to the variable in which to store the determinant. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; Matrix3d inverse; bool invertible; double determinant; m.computeInverseAndDetWithCheck(inverse,determinant,invertible); cout << "Its determinant is " << determinant << endl; if(invertible) { cout << "It is invertible, and its inverse is:" << endl << inverse << endl; } else { cout << "It is not invertible." << endl; }
Output:
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 Its determinant is 0.209 It is invertible, and its inverse is: -0.199 2.23 2.84 1.01 -0.555 -1.42 -1.62 3.59 3.29
| inline |
This is defined in the LU module.
#include <Eigen/LU>
Computation of matrix inverse, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
inverse | Reference to the matrix in which to store the inverse. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; Matrix3d inverse; bool invertible; m.computeInverseWithCheck(inverse,invertible); if(invertible) { cout << "It is invertible, and its inverse is:" << endl << inverse << endl; } else { cout << "It is not invertible." << endl; }
Output:
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 It is invertible, and its inverse is: -0.199 2.23 2.84 1.01 -0.555 -1.42 -1.62 3.59 3.29
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::cos | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise cosine use ArrayBase::cos .
*this
. const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::cosh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic cosine use ArrayBase::cosh .
*this
.
| inline |
This is defined in the LU module.
#include <Eigen/LU>
| inline |
*this
*this
is not required to be square.
Example:
Matrix3i m = Matrix3i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the main diagonal of m:" << endl << m.diagonal() << endl;
Output:
Here is the matrix m: 7 6 -3 -2 9 6 6 -6 -5 Here are the coefficients on the main diagonal of m: 7 9 -5
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl << m.diagonal<1>().transpose() << endl << m.diagonal<-2>().transpose() << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m: 9 1 9 6 6
| inline |
This is the const version of diagonal().
This is the const version of diagonal<int>().
| inline |
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Matrix4i m = Matrix4i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl << m.diagonal(1).transpose() << endl << m.diagonal(-2).transpose() << endl;
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m: 9 1 9 6 6
| inline |
This is the const version of diagonal(Index).
| inline |
| inline |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
| inline |
Computes the eigenvalues of a matrix.
This is defined in the Eigenvalues module.
#include <Eigen/Eigenvalues>
This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
MatrixXd ones = MatrixXd::Ones(3,3); VectorXcd eivals = ones.eigenvalues(); cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
Output:
The eigenvalues of the 3x3 matrix of ones are: (-5.31e-17,0) (3,0) (0,0)
const MatrixExponentialReturnValue<Derived> Eigen::MatrixBase< Derived >::exp | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise exponential use ArrayBase::exp .
*this
.
| inline |
| inline |
| inline |
| inline |
| inline |
*this
.
| inline |
This is defined in the LU module.
#include <Eigen/LU>
*this
.
| inline |
*this
.
| inline |
*this
avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.
| inlinestatic |
This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.
Example:
cout << Matrix<double, 3, 4>::Identity() << endl;
Output:
1 0 0 0 0 1 0 0 0 0 1 0
| inlinestatic |
The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.
This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.
Example:
cout << MatrixXd::Identity(4, 3) << endl;
Output:
1 0 0 0 1 0 0 0 1 0 0 0
| inline |
This is defined in the LU module.
#include <Eigen/LU>
For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.
Matrix3d m = Matrix3d::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Its inverse is:" << endl << m.inverse() << endl;Output:
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 Its inverse is: -0.199 2.23 2.84 1.01 -0.555 -1.42 -1.62 3.59 3.29
bool Eigen::MatrixBase< Derived >::isDiagonal | ( | const RealScalar & |
prec = NumTraits<Scalar>::dummy_precision()
|
) | const |
Example:
Matrix3d m = 10000 * Matrix3d::Identity(); m(0,2) = 1; cout << "Here's the matrix m:" << endl << m << endl; cout << "m.isDiagonal() returns: " << m.isDiagonal() << endl; cout << "m.isDiagonal(1e-3) returns: " << m.isDiagonal(1e-3) << endl;
Output:
Here's the matrix m: 1e+04 0 1 0 1e+04 0 0 0 1e+04 m.isDiagonal() returns: 0 m.isDiagonal(1e-3) returns: 1
bool Eigen::MatrixBase< Derived >::isIdentity | ( | const RealScalar & |
prec = NumTraits<Scalar>::dummy_precision()
|
) | const |
Example:
Matrix3d m = Matrix3d::Identity(); m(0,2) = 1e-4; cout << "Here's the matrix m:" << endl << m << endl; cout << "m.isIdentity() returns: " << m.isIdentity() << endl; cout << "m.isIdentity(1e-3) returns: " << m.isIdentity(1e-3) << endl;
Output:
Here's the matrix m: 1 0 0.0001 0 1 0 0 0 1 m.isIdentity() returns: 0 m.isIdentity(1e-3) returns: 1
bool Eigen::MatrixBase< Derived >::isLowerTriangular | ( | const RealScalar & |
prec = NumTraits<Scalar>::dummy_precision()
|
) | const |
bool Eigen::MatrixBase< Derived >::isOrthogonal | ( | const MatrixBase< OtherDerived > & | other, |
const RealScalar & |
prec = NumTraits<Scalar>::dummy_precision() | ||
) | const |
Example:
Vector3d v(1,0,0); Vector3d w(1e-4,0,1); cout << "Here's the vector v:" << endl << v << endl; cout << "Here's the vector w:" << endl << w << endl; cout << "v.isOrthogonal(w) returns: " << v.isOrthogonal(w) << endl; cout << "v.isOrthogonal(w,1e-3) returns: " << v.isOrthogonal(w,1e-3) << endl;
Output:
Here's the vector v: 1 0 0 Here's the vector w: 0.0001 0 1 v.isOrthogonal(w) returns: 0 v.isOrthogonal(w,1e-3) returns: 1
bool Eigen::MatrixBase< Derived >::isUnitary | ( | const RealScalar & |
prec = NumTraits<Scalar>::dummy_precision()
|
) | const |
m.isUnitary()
returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.Example:
Matrix3d m = Matrix3d::Identity(); m(0,2) = 1e-4; cout << "Here's the matrix m:" << endl << m << endl; cout << "m.isUnitary() returns: " << m.isUnitary() << endl; cout << "m.isUnitary(1e-3) returns: " << m.isUnitary(1e-3) << endl;
Output:
Here's the matrix m: 1 0 0.0001 0 1 0 0 0 1 m.isUnitary() returns: 0 m.isUnitary(1e-3) returns: 1
bool Eigen::MatrixBase< Derived >::isUpperTriangular | ( | const RealScalar & |
prec = NumTraits<Scalar>::dummy_precision()
|
) | const |
| inline |
This is defined in the SVD module.
#include <Eigen/SVD>
*this
computed by two-sided Jacobi transformations.
| inline |
*this
and other without implicit evaluation.The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.
| inline |
This is defined in the Cholesky module.
#include <Eigen/Cholesky>
*this
| inline |
This is defined in the Cholesky module.
#include <Eigen/Cholesky>
*this
const MatrixLogarithmReturnValue<Derived> Eigen::MatrixBase< Derived >::log | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise logarithm use ArrayBase::log .
*this
. MatrixBase< Derived >::RealScalar Eigen::MatrixBase< Derived >::lpNorm |
*this
, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this
. If p is the special value Eigen::Infinity, this function returns the \( \ell^\infty \) norm, that is the maximum of the absolute values of the coefficients of *this
.In all cases, if *this
is empty, then the value 0 is returned.
*this
is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \(\infty\)-norm matrix operator norms using partial reductions .
| inline |
This is defined in the LU module.
#include <Eigen/LU>
Synonym of partialPivLu().
*this
.void Eigen::MatrixBase< Derived >::makeHouseholder | ( | EssentialPart & | essential, |
Scalar & | tau, | ||
RealScalar & | beta | ||
) | const |
Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \)
On output:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
void Eigen::MatrixBase< Derived >::makeHouseholderInPlace | ( | Scalar & | tau, |
RealScalar & | beta | ||
) |
Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \)
The essential part of the vector v
is stored in *this.
On output:
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
NoAlias< Derived, MatrixBase > Eigen::MatrixBase< Derived >::noalias |
*this
with an operator= assuming no aliasing between *this
and the source expression.More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only useful when the source expression contains a matrix product.
Here are some examples where noalias is useful:
D.noalias() = A * B; D.noalias() += A.transpose() * B; D.noalias() -= 2 * A * B.adjoint();
On the other hand the following example will lead to a wrong result:
A.noalias() = A * B;
because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:
A = A * B;
| inline |
*this
, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this
with itself.
| inline |
Normalizes the vector, i.e. divides it by its own norm.
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
*this
is left unchanged.
| inline |
*this
by its own norm.This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
| inline |
*this
and other are not exactly equal to each other.
| inline |
*this
by the diagonal matrix diagonal.
| inline |
*this
and other.
| inline |
replaces *this
by *this
* other.
*this
Example:
Matrix3f A = Matrix3f::Random(3,3), B; B << 0,1,0, 0,0,1, 1,0,0; cout << "At start, A = " << endl << A << endl; A *= B; cout << "After A *= B, A = " << endl << A << endl; A.applyOnTheRight(B); // equivalent to A *= B cout << "After applyOnTheRight, A = " << endl << A << endl;
Output:
At start, A = 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 After A *= B, A = -0.33 0.68 0.597 0.536 -0.211 0.823 -0.444 0.566 -0.605 After applyOnTheRight, A = 0.597 -0.33 0.68 0.823 0.536 -0.211 -0.605 -0.444 0.566
| inline |
replaces *this
by *this
+ other.
*this
| inline |
replaces *this
by *this
- other.
*this
| inline |
Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)
| inline |
*this
and other are all exactly equal.
| inline |
Computes the L2 operator norm.
This is defined in the Eigenvalues module.
#include <Eigen/Eigenvalues>
This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix \( A \) is defined to be
\[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \]
where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix \( A^*A \).
The current implementation uses the eigenvalues of \( A^*A \), as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
MatrixXd ones = MatrixXd::Ones(3,3); cout << "The operator norm of the 3x3 matrix of ones is " << ones.operatorNorm() << endl;
Output:
The operator norm of the 3x3 matrix of ones is 3
| inline |
This is defined in the LU module.
#include <Eigen/LU>
*this
.const MatrixPowerReturnValue<Derived> Eigen::MatrixBase< Derived >::pow | ( | const RealScalar & | p | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p
use ArrayBase::pow .
p
of *this
. const MatrixComplexPowerReturnValue<Derived> Eigen::MatrixBase< Derived >::pow | ( | const std::complex< RealScalar > & | p | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p
use ArrayBase::pow .
p
of *this
. MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) |
The parameter UpLo can be either Upper
or Lower
Example:
Matrix3i m = Matrix3i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the symmetric matrix extracted from the upper part of m:" << endl << Matrix3i(m.selfadjointView<Upper>()) << endl; cout << "Here is the symmetric matrix extracted from the lower part of m:" << endl << Matrix3i(m.selfadjointView<Lower>()) << endl;
Output:
Here is the matrix m: 7 6 -3 -2 9 6 6 -6 -5 Here is the symmetric matrix extracted from the upper part of m: 7 6 -3 6 9 6 -3 6 -5 Here is the symmetric matrix extracted from the lower part of m: 7 -2 6 -2 9 -6 6 -6 -5
MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) | const |
This is the const version of MatrixBase::selfadjointView()
| inline |
Writes the identity expression (not necessarily square) into *this.
Example:
Matrix4i m = Matrix4i::Zero(); m.block<3,3>(1,0).setIdentity(); cout << m << endl;
Output:
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
| inline |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
rows | the new number of rows |
cols | the new number of columns |
Example:
MatrixXf m; m.setIdentity(3, 3); cout << m << endl;
Output:
1 0 0 0 1 0 0 0 1
| inline |
Set the coefficients of *this
to the i-th unit (basis) vector.
i | index of the unique coefficient to be set to 1 |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
| inline |
Resizes to the given newSize, and writes the i-th unit (basis) vector into *this.
newSize | the new size of the vector |
i | index of the unique coefficient to be set to 1 |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::sin | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise sine use ArrayBase::sin .
*this
. const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::sinh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic sine use ArrayBase::sinh .
*this
. const MatrixSquareRootReturnValue<Derived> Eigen::MatrixBase< Derived >::sqrt | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise square root use ArrayBase::sqrt .
*this
.
| inline |
| inline |
*this
avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s
2 - compute \( s \Vert \frac{*this}{s} \Vert \) in a standard wayFor architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.
| inline |
Normalizes the vector while avoid underflow and overflow
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
This method is analogue to the normalize() method, but it reduces the risk of underflow and overflow when computing the norm.
*this
is left unchanged.
| inline |
*this
by its own norm while avoiding underflow and overflow.This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
This method is analogue to the normalized() method, but it reduces the risk of underflow and overflow when computing the norm.
| inline |
*this
, i.e. the sum of the coefficients on the main diagonal.*this
can be any matrix, not necessarily square.
MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) |
The parameter Mode can have the following values: Upper
, StrictlyUpper
, UnitUpper
, Lower
, StrictlyLower
, UnitLower
.
Example:
Matrix3i m = Matrix3i::Random(); cout << "Here is the matrix m:" << endl << m << endl; cout << "Here is the upper-triangular matrix extracted from m:" << endl << Matrix3i(m.triangularView<Eigen::Upper>()) << endl; cout << "Here is the strictly-upper-triangular matrix extracted from m:" << endl << Matrix3i(m.triangularView<Eigen::StrictlyUpper>()) << endl; cout << "Here is the unit-lower-triangular matrix extracted from m:" << endl << Matrix3i(m.triangularView<Eigen::UnitLower>()) << endl; // FIXME need to implement output for triangularViews (Bug 885)
Output:
Here is the matrix m: 7 6 -3 -2 9 6 6 -6 -5 Here is the upper-triangular matrix extracted from m: 7 6 -3 0 9 6 0 0 -5 Here is the strictly-upper-triangular matrix extracted from m: 0 6 -3 0 0 6 0 0 0 Here is the unit-lower-triangular matrix extracted from m: 1 0 0 -2 1 0 6 -6 1
MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) | const |
This is the const version of MatrixBase::triangularView()
| inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
This variant is for fixed-size vector only.
| inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
| inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
| inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
| inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
| inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1MatrixBase.html