Rotation given by a cosine-sine pair.
This is defined in the Jacobi module.
#include <Eigen/Jacobi> 
This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J of angle \( \theta \) defined by its cosine c and sine s as follow: \( J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \)
You can apply the respective counter-clockwise rotation to a column vector v by applying its adjoint on the left: \( v = J^* v \) that translates to the following Eigen code: 
v.applyOnTheLeft(J.adjoint());
| JacobiRotation | adjoint () const | 
| JacobiRotation () | |
| JacobiRotation (const Scalar &c, const Scalar &s) | |
| void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r=0) | 
| template<typename Derived > | |
| bool | makeJacobi (const MatrixBase< Derived > &, Index p, Index q) | 
| bool | makeJacobi (const RealScalar &x, const Scalar &y, const RealScalar &z) | 
| JacobiRotation | operator* (const JacobiRotation &other) | 
| JacobiRotation | transpose () const | 
| 
 | inline | 
Default constructor without any initialization.
| 
 | inline | 
Construct a planar rotation from a cosine-sine pair (c, s). 
| 
 | inline | 
Returns the adjoint transformation
| void Eigen::JacobiRotation< Scalar >::makeGivens | ( | const Scalar & | p, | 
| const Scalar & | q, | ||
| Scalar * | r = 0 | ||
| ) | 
Makes *this as a Givens rotation G such that applying \( G^* \) to the left of the vector \( V = \left ( \begin{array}{c} p \\ q \end{array} \right )\) yields: \( G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\).
The value of r is returned if r is not null (the default is null). Also note that G is built such that the cosine is always real.
Example:
Vector2f v = Vector2f::Random(); JacobiRotation<float> G; G.makeGivens(v.x(), v.y()); cout << "Here is the vector v:" << endl << v << endl; v.applyOnTheLeft(0, 1, G.adjoint()); cout << "Here is the vector J' * v:" << endl << v << endl;
Output:
Here is the vector v:
  0.68
-0.211
Here is the vector J' * v:
0.712
    0
This function implements the continuous Givens rotation generation algorithm found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
| 
 | inline | 
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the 2x2 selfadjoint matrix \( B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\) yields a diagonal matrix \( A = J^* B J \)
Example:
Matrix2f m = Matrix2f::Random(); m = (m + m.adjoint()).eval(); JacobiRotation<float> J; J.makeJacobi(m, 0, 1); cout << "Here is the matrix m:" << endl << m << endl; m.applyOnTheLeft(0, 1, J.adjoint()); m.applyOnTheRight(0, 1, J); cout << "Here is the matrix J' * m * J:" << endl << m << endl;
Output:
Here is the matrix m:
 1.36 0.355
0.355  1.19
Here is the matrix J' * m * J:
 1.64     0
    0 0.913
| bool Eigen::JacobiRotation< Scalar >::makeJacobi | ( | const RealScalar & | x, | 
| const Scalar & | y, | ||
| const RealScalar & | z | ||
| ) | 
Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix \( B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\) yields a diagonal matrix \( A = J^* B J \)
| 
 | inline | 
Concatenates two planar rotation
| 
 | inline | 
Returns the transposed transformation
    © Eigen.
Licensed under the MPL2 License.
    https://eigen.tuxfamily.org/dox/classEigen_1_1JacobiRotation.html