W3cubDocs

/Eigen3

SparseCore module

This module provides a sparse matrix representation, and basic associated matrix manipulations and operations.

See the Sparse tutorial

#include <Eigen/SparseCore>

This module depends on: Core.

class Eigen::Map< SparseMatrixType >
Specialization of class Map for SparseMatrix-like storage. More...
class Eigen::Ref< SparseMatrixType, Options >
A sparse matrix expression referencing an existing sparse expression. More...
class Eigen::Ref< SparseVectorType >
A sparse vector expression referencing an existing sparse vector expression. More...
class Eigen::SparseCompressedBase< Derived >
Common base class for sparse [compressed]-{row|column}-storage format. More...
class Eigen::SparseMapBase< Derived, ReadOnlyAccessors >
Common base class for Map and Ref instance of sparse matrix and vector. More...
class Eigen::SparseMapBase< Derived, WriteAccessors >
Common base class for writable Map and Ref instance of sparse matrix and vector. More...
class Eigen::SparseMatrix< _Scalar, _Options, _StorageIndex >
A versatible sparse matrix representation. More...
class Eigen::SparseMatrixBase< Derived >
Base class of any sparse matrices or sparse expressions. More...
class Eigen::SparseSelfAdjointView< MatrixType, _Mode >
Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. More...
class Eigen::SparseSolverBase< Derived >
A base class for sparse solvers. More...
class Eigen::SparseVector< _Scalar, _Options, _StorageIndex >
a sparse vector class More...
class Eigen::SparseView< MatrixType >
Expression of a dense or sparse matrix with zero or too small values removed. More...
class Eigen::TriangularViewImpl< MatrixType, Mode, Sparse >
Base class for a triangular part in a sparse matrix. More...
class Eigen::Triplet< Scalar, StorageIndex >
A small structure to hold a non zero as a triplet (i,j,value). More...
const SparseView< Derived > Eigen::MatrixBase< Derived >::sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const

sparseView()

template<typename Derived >
const SparseView< Derived > Eigen::MatrixBase< Derived >::sparseView ( const Scalar & reference = Scalar(0),
const typename NumTraits< Scalar >::Real & epsilon = NumTraits<Scalar>::dummy_precision()
) const
Returns
a sparse expression of the dense expression *this with values smaller than reference * epsilon removed.

This method is typically used when prototyping to convert a quickly assembled dense Matrix D to a SparseMatrix S:

MatrixXd D(n,m);
SparseMatrix<double> S;
S = D.sparseView();             // suppress numerical zeros (exact)
S = D.sparseView(reference);
S = D.sparseView(reference,epsilon);

where reference is a meaningful non zero reference value, and epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision().

See also
SparseMatrixBase::pruned(), class SparseView

© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/group__SparseCore__Module.html