W3cubDocs

/Eigen3

Eigen::SparseSelfAdjointView

template<typename MatrixType, unsigned int _Mode>
class Eigen::SparseSelfAdjointView< MatrixType, _Mode >

Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.

Parameters
MatrixType the type of the dense matrix storing the coefficients
Mode can be either Lower or Upper

This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.

See also
SparseMatrixBase::selfadjointView()
template<typename OtherDerived >
Product< SparseSelfAdjointView, OtherDerived > operator* (const MatrixBase< OtherDerived > &rhs) const
template<typename OtherDerived >
Product< SparseSelfAdjointView, OtherDerived > operator* (const SparseMatrixBase< OtherDerived > &rhs) const
template<typename DerivedU >
SparseSelfAdjointView & rankUpdate (const SparseMatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1))
SparseSymmetricPermutationProduct< _MatrixTypeNested, Mode > twistedBy (const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const
- Public Member Functions inherited from Eigen::EigenBase< SparseSelfAdjointView< MatrixType, _Mode > >
EIGEN_CONSTEXPR Index cols () const EIGEN_NOEXCEPT
SparseSelfAdjointView< MatrixType, _Mode > & derived ()
const SparseSelfAdjointView< MatrixType, _Mode > & derived () const
EIGEN_CONSTEXPR Index rows () const EIGEN_NOEXCEPT
EIGEN_CONSTEXPR Index size () const EIGEN_NOEXCEPT
- Public Types inherited from Eigen::EigenBase< SparseSelfAdjointView< MatrixType, _Mode > >
typedef Eigen::Index Index
The interface type of indices. More...

operator*() [1/2]

template<typename MatrixType , unsigned int _Mode>
template<typename OtherDerived >
Product<SparseSelfAdjointView,OtherDerived> Eigen::SparseSelfAdjointView< MatrixType, _Mode >::operator* ( const MatrixBase< OtherDerived > & rhs ) const
inline

Efficient sparse self-adjoint matrix times dense vector/matrix product

operator*() [2/2]

template<typename MatrixType , unsigned int _Mode>
template<typename OtherDerived >
Product<SparseSelfAdjointView, OtherDerived> Eigen::SparseSelfAdjointView< MatrixType, _Mode >::operator* ( const SparseMatrixBase< OtherDerived > & rhs ) const
inline
Returns
an expression of the matrix product between a sparse self-adjoint matrix *this and a sparse matrix rhs.

Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product. Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.

rankUpdate()

template<typename MatrixType , unsigned int _Mode>
template<typename DerivedU >
SparseSelfAdjointView& Eigen::SparseSelfAdjointView< MatrixType, _Mode >::rankUpdate ( const SparseMatrixBase< DerivedU > & u,
const Scalar & alpha = Scalar(1)
)

Perform a symmetric rank K update of the selfadjoint matrix *this: \( this = this + \alpha ( u u^* ) \) where u is a vector or matrix.

Returns
a reference to *this

To perform \( this = this + \alpha ( u^* u ) \) you can simply call this function with u.adjoint().

twistedBy()

template<typename MatrixType , unsigned int _Mode>
SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> Eigen::SparseSelfAdjointView< MatrixType, _Mode >::twistedBy ( const PermutationMatrix< Dynamic, Dynamic, StorageIndex > & perm ) const
inline
Returns
an expression of P H P^-1

The documentation for this class was generated from the following file: