W3cubDocs

/Eigen3

Eigen::LeastSquaresConjugateGradient

template<typename _MatrixType, typename _Preconditioner>
class Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >

A conjugate gradient solver for sparse (or dense) least-square problems.

This class allows to solve for A x = b linear problems using an iterative conjugate gradient algorithm. The matrix A can be non symmetric and rectangular, but the matrix A' A should be positive-definite to guaranty stability. Otherwise, the SparseLU or SparseQR classes might be preferable. The matrix A and the vectors x and b can be either dense or sparse.

Template Parameters
_MatrixType the type of the matrix A, can be a dense or a sparse matrix.
_Preconditioner the type of the preconditioner. Default is LeastSquareDiagonalPreconditioner

This class follows the sparse solver concept .

The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.

This class can be used as the direct solver classes. Here is a typical usage example:

int m=1000000, n = 10000;
VectorXd x(n), b(m);
SparseMatrix<double> A(m,n);
// fill A and b
LeastSquaresConjugateGradient<SparseMatrix<double> > lscg;
lscg.compute(A);
x = lscg.solve(b);
std::cout << "#iterations:     " << lscg.iterations() << std::endl;
std::cout << "estimated error: " << lscg.error()      << std::endl;
// update b, and solve again
x = lscg.solve(b);

By default the iterations start with x=0 as an initial guess of the solution. One can control the start using the solveWithGuess() method.

See also
class ConjugateGradient, SparseLU, SparseQR
LeastSquaresConjugateGradient ()
template<typename MatrixDerived >
LeastSquaresConjugateGradient (const EigenBase< MatrixDerived > &A)
- Public Member Functions inherited from Eigen::IterativeSolverBase< LeastSquaresConjugateGradient< _MatrixType, _Preconditioner > >
LeastSquaresConjugateGradient< _MatrixType, _Preconditioner > & analyzePattern (const EigenBase< MatrixDerived > &A)
LeastSquaresConjugateGradient< _MatrixType, _Preconditioner > & compute (const EigenBase< MatrixDerived > &A)
RealScalar error () const
LeastSquaresConjugateGradient< _MatrixType, _Preconditioner > & factorize (const EigenBase< MatrixDerived > &A)
ComputationInfo info () const
Index iterations () const
IterativeSolverBase ()
IterativeSolverBase (const EigenBase< MatrixDerived > &A)
Index maxIterations () const
Preconditioner & preconditioner ()
const Preconditioner & preconditioner () const
LeastSquaresConjugateGradient< _MatrixType, _Preconditioner > & setMaxIterations (Index maxIters)
LeastSquaresConjugateGradient< _MatrixType, _Preconditioner > & setTolerance (const RealScalar &tolerance)
const SolveWithGuess< LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >, Rhs, Guess > solveWithGuess (const MatrixBase< Rhs > &b, const Guess &x0) const
RealScalar tolerance () const
- Public Member Functions inherited from Eigen::SparseSolverBase< Derived >
template<typename Rhs >
const Solve< Derived, Rhs > solve (const MatrixBase< Rhs > &b) const
template<typename Rhs >
const Solve< Derived, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
SparseSolverBase ()

LeastSquaresConjugateGradient() [1/2]

template<typename _MatrixType , typename _Preconditioner >
Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::LeastSquaresConjugateGradient ( )
inline

Default constructor.

LeastSquaresConjugateGradient() [2/2]

template<typename _MatrixType , typename _Preconditioner >
template<typename MatrixDerived >
Eigen::LeastSquaresConjugateGradient< _MatrixType, _Preconditioner >::LeastSquaresConjugateGradient ( const EigenBase< MatrixDerived > & A )
inlineexplicit

Initialize the solver with matrix A for further Ax=b solving.

This constructor is a shortcut for the default constructor followed by a call to compute().

Warning
this class stores a reference to the matrix A as well as some precomputed values that depend on it. Therefore, if A is changed this class becomes invalid. Call compute() to update it with the new matrix A, or modify a copy of A.

The documentation for this class was generated from the following file: