template<typename _Scalar, int _Options, typename _StorageIndex>
class Eigen::SparseMatrix< _Scalar, _Options, _StorageIndex >
A versatible sparse matrix representation.
This class implements a more versatile variants of the common compressed row/column storage format. Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. All the non zeros are stored in a single large buffer. Unlike the compressed format, there might be extra space in between the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero can be done with limited memory reallocation and copies.
A call to the function makeCompressed() turns the matrix into the standard compressed format compatible with many library.
More details on this storage sceheme are given in the manual pages.
- Template Parameters
-
| _Scalar |
the scalar type, i.e. the type of the coefficients |
| _Options |
Union of bit flags controlling the storage scheme. Currently the only possibility is ColMajor or RowMajor. The default is 0 which means column-major. |
| _StorageIndex |
the type of the indices. It has to be a signed type (e.g., short, int, std::ptrdiff_t). Default is int. |
- Warning
- In Eigen 3.2, the undocumented type
SparseMatrix::Index was improperly defined as the storage index type (e.g., int), whereas it is now (starting from Eigen 3.3) deprecated and always defined as Eigen::Index. Codes making use of SparseMatrix::Index, might thus likely have to be changed to use SparseMatrix::StorageIndex instead.
This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_SPARSEMATRIX_PLUGIN.
|
| Scalar |
coeff (Index row, Index col) const |
| |
| Scalar & |
coeffRef (Index row, Index col) |
| |
|
Index |
cols () const |
| |
| void |
conservativeResize (Index rows, Index cols) |
| |
|
DiagonalReturnType |
diagonal () |
| |
| const ConstDiagonalReturnType |
diagonal () const |
| |
|
StorageIndex * |
innerIndexPtr () |
| |
| const StorageIndex * |
innerIndexPtr () const |
| |
|
StorageIndex * |
innerNonZeroPtr () |
| |
| const StorageIndex * |
innerNonZeroPtr () const |
| |
|
Index |
innerSize () const |
| |
| Scalar & |
insert (Index row, Index col) |
| |
| bool |
isCompressed () const |
| |
| void |
makeCompressed () |
| |
|
Index |
nonZeros () const |
| |
|
StorageIndex * |
outerIndexPtr () |
| |
| const StorageIndex * |
outerIndexPtr () const |
| |
|
Index |
outerSize () const |
| |
| template<typename KeepFunc > |
| void |
prune (const KeepFunc &keep=KeepFunc()) |
| |
| void |
prune (const Scalar &reference, const RealScalar &epsilon=NumTraits< RealScalar >::dummy_precision()) |
| |
| template<class SizesType > |
| void |
reserve (const SizesType &reserveSizes) |
| |
| void |
reserve (Index reserveSize) |
| |
| void |
resize (Index rows, Index cols) |
| |
|
Index |
rows () const |
| |
| template<typename InputIterators > |
| void |
setFromTriplets (const InputIterators &begin, const InputIterators &end) |
| |
| template<typename InputIterators , typename DupFunctor > |
| void |
setFromTriplets (const InputIterators &begin, const InputIterators &end, DupFunctor dup_func) |
| |
| void |
setIdentity () |
| |
| void |
setZero () |
| |
| |
SparseMatrix () |
| |
|
template<typename OtherDerived > |
| |
SparseMatrix (const DiagonalBase< OtherDerived > &other) |
| |
Copy constructor with in-place evaluation.
|
| |
|
template<typename OtherDerived > |
| |
SparseMatrix (const ReturnByValue< OtherDerived > &other) |
| |
Copy constructor with in-place evaluation.
|
| |
| |
SparseMatrix (const SparseMatrix &other) |
| |
| template<typename OtherDerived > |
| |
SparseMatrix (const SparseMatrixBase< OtherDerived > &other) |
| |
| template<typename OtherDerived , unsigned int UpLo> |
| |
SparseMatrix (const SparseSelfAdjointView< OtherDerived, UpLo > &other) |
| |
| |
SparseMatrix (Index rows, Index cols) |
| |
| Scalar |
sum () const |
| |
| void |
swap (SparseMatrix &other) |
| |
| void |
uncompress () |
| |
| Scalar * |
valuePtr () |
| |
| const Scalar * |
valuePtr () const |
| |
| |
~SparseMatrix () |
| |
Public Member Functions inherited from Eigen::SparseCompressedBase< SparseMatrix< _Scalar, _Options, _StorageIndex > >
|
|
Map< Array< Scalar, Dynamic, 1 > > |
coeffs () |
| |
| const Map< const Array< Scalar, Dynamic, 1 > > |
coeffs () const |
| |
|
StorageIndex * |
innerIndexPtr () |
| |
| const StorageIndex * |
innerIndexPtr () const |
| |
|
StorageIndex * |
innerNonZeroPtr () |
| |
| const StorageIndex * |
innerNonZeroPtr () const |
| |
| bool |
isCompressed () const |
| |
|
Index |
nonZeros () const |
| |
|
StorageIndex * |
outerIndexPtr () |
| |
| const StorageIndex * |
outerIndexPtr () const |
| |
| Scalar * |
valuePtr () |
| |
| const Scalar * |
valuePtr () const |
| |
Public Member Functions inherited from Eigen::SparseMatrixBase< SparseMatrix< _Scalar, _Options, _StorageIndex > >
|
|
Index |
cols () const |
| |
| const internal::eval< SparseMatrix< _Scalar, _Options, _StorageIndex > >::type |
eval () const |
| |
|
Index |
innerSize () const |
| |
| bool |
isVector () const |
| |
| const Product< SparseMatrix< _Scalar, _Options, _StorageIndex >, OtherDerived, AliasFreeProduct > |
operator* (const SparseMatrixBase< OtherDerived > &other) const |
| |
|
Index |
outerSize () const |
| |
| const SparseView< SparseMatrix< _Scalar, _Options, _StorageIndex > > |
pruned (const Scalar &reference=Scalar(0), const RealScalar &epsilon=NumTraits< Scalar >::dummy_precision()) const |
| |
|
Index |
rows () const |
| |
|
Index |
size () const |
| |
| SparseSymmetricPermutationProduct< SparseMatrix< _Scalar, _Options, _StorageIndex >, Upper|Lower > |
twistedBy (const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const |
| |
Public Member Functions inherited from Eigen::EigenBase< SparseMatrix< _Scalar, _Options, _StorageIndex > >
|
| EIGEN_CONSTEXPR Index |
cols () const EIGEN_NOEXCEPT |
| |
|
SparseMatrix< _Scalar, _Options, _StorageIndex > & |
derived () |
| |
| const SparseMatrix< _Scalar, _Options, _StorageIndex > & |
derived () const |
| |
| EIGEN_CONSTEXPR Index |
rows () const EIGEN_NOEXCEPT |
| |
| EIGEN_CONSTEXPR Index |
size () const EIGEN_NOEXCEPT |
| |
template<typename _Scalar , int _Options, typename _StorageIndex >
- Returns
- a non-const reference to the value of the matrix at position i, j
If the element does not exist then it is inserted via the insert(Index,Index) function which itself turns the matrix into a non compressed form if that was not the case.
This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) function if the element does not already exist.
template<typename _Scalar , int _Options, typename _StorageIndex >
- Returns
- a reference to a novel non zero coefficient with coordinates row x col. The non zero coefficient must not already exist.
If the matrix *this is in compressed mode, then *this is turned into uncompressed mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier. In this case, the insertion procedure is optimized for a sequential insertion mode where elements are assumed to be inserted by increasing outer-indices.
If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1) if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
template<typename _Scalar , int _Options, typename _StorageIndex >
template<typename KeepFunc >
| void Eigen::SparseMatrix< _Scalar, _Options, _StorageIndex >::prune | ( | const KeepFunc & |
keep = KeepFunc()
|
) | | | inline |
Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate keep. The functor type KeepFunc must implement the following function:
bool operator() (const Index& row, const Index& col, const Scalar& value) const;
- See also
- prune(Scalar,RealScalar)
template<typename _Scalar , int _Options, typename _StorageIndex >
template<class SizesType >
| void Eigen::SparseMatrix< _Scalar, _Options, _StorageIndex >::reserve | ( | const SizesType & | reserveSizes |
) | | | inline |
Preallocates reserveSize[j] non zeros for each column (resp. row) j.
This function turns the matrix in non-compressed mode.
The type SizesType must expose the following interface:
typedef value_type;
const value_type& operator[](i) const;
for i in the [0,this->outerSize()[ range. Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
template<typename Scalar , int _Options, typename _StorageIndex >
template<typename InputIterators >
| void Eigen::SparseMatrix< Scalar, _Options, _StorageIndex >::setFromTriplets | ( | const InputIterators & |
begin, |
| | const InputIterators & |
end |
| ) | |
|
Fill the matrix *this with the list of triplets defined by the iterator range begin - end.
A triplet is a tuple (i,j,value) defining a non-zero element. The input list of triplets does not have to be sorted, and can contains duplicated elements. In any case, the result is a sorted and compressed sparse matrix where the duplicates have been summed up. This is a O(n) operation, with n the number of triplet elements. The initial contents of *this is destroyed. The matrix *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
The InputIterators value_type must provide the following interface:
Scalar value() const; // the value
Scalar row() const; // the row index i
Scalar col() const; // the column index j
See for instance the Eigen::Triplet template class.
Here is a typical usage example:
typedef Triplet<double> T;
std::vector<T> tripletList;
tripletList.reserve(estimation_of_entries);
for(...)
{
// ...
tripletList.push_back(T(i,j,v_ij));
}
SparseMatrixType m(rows,cols);
m.setFromTriplets(tripletList.begin(), tripletList.end());
// m is ready to go!
- Warning
- The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather be explicitly stored into a std::vector for instance.
template<typename Scalar , int _Options, typename _StorageIndex >
template<typename InputIterators , typename DupFunctor >
| void Eigen::SparseMatrix< Scalar, _Options, _StorageIndex >::setFromTriplets | ( | const InputIterators & |
begin, |
| | const InputIterators & |
end, |
| | DupFunctor |
dup_func |
| ) | |
|
The same as setFromTriplets but when duplicates are met the functor dup_func is applied:
value = dup_func(OldValue, NewValue)
Here is a C++11 example keeping the latest entry only:
mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });