Eigen::UmfPackLU
        
template<typename _MatrixType>
 class Eigen::UmfPackLU< _MatrixType >
 A sparse LU factorization and solver based on UmfPack. 
 This class allows to solve for A.X = B sparse linear problems via a LU factorization using the UmfPack library. The sparse matrix A must be squared and full rank. The vectors or matrices X and B can be either dense or sparse.
 
- Warning
- The input matrix A should be in a compressed and column-major form. Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. 
- Template Parameters
-   
| _MatrixType | the type of the sparse matrix A, it must be a SparseMatrix<> |  
 
This class follows the sparse solver concept .
 
- See also
- 
Sparse solver concept, class SparseLU 
   
     analyzePattern()
    template<typename _MatrixType > 
  template<typename InputMatrixType > 
   |   | void Eigen::UmfPackLU< _MatrixType >::analyzePattern | ( | const InputMatrixType & | matrix | ) |  |  | inline | 
 
  
 Performs a symbolic decomposition on the sparcity of matrix.
 This function is particularly useful when solving for several problems having the same structure.
 
- See also
- 
factorize(), compute() 
     compute()
    template<typename _MatrixType > 
  template<typename InputMatrixType > 
   |   | void Eigen::UmfPackLU< _MatrixType >::compute | ( | const InputMatrixType & | matrix | ) |  |  | inline | 
 
  
 Computes the sparse Cholesky decomposition of matrix Note that the matrix should be column-major, and in compressed format for best performance. 
- See also
- 
SparseMatrix::makeCompressed(). 
     factorize()
    template<typename _MatrixType > 
  template<typename InputMatrixType > 
   |   | void Eigen::UmfPackLU< _MatrixType >::factorize | ( | const InputMatrixType & | matrix | ) |  |  | inline | 
 
  
 Performs a numeric decomposition of matrix 
 The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
 
- See also
- 
analyzePattern(), compute() 
     info()
    template<typename _MatrixType > 
   
 Reports whether previous computation was successful. 
 
- Returns
- 
Successif computation was successful,NumericalIssueif the matrix.appears to be negative.
     printUmfpackControl()
    template<typename _MatrixType > 
   
    printUmfpackInfo()
    template<typename _MatrixType > 
   
    printUmfpackStatus()
    template<typename _MatrixType > 
   
 Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization).
 
- See also
- 
analyzePattern(), compute() 
     umfpackControl() [1/2]
    template<typename _MatrixType > 
   
 Provides access to the control settings array used by UmfPack.
 If this array contains NaN's, the default values are used.
 See UMFPACK documentation for details. 
      umfpackControl() [2/2]
    template<typename _MatrixType > 
   
 Provides access to the control settings array used by UmfPack.
 If this array contains NaN's, the default values are used.
 See UMFPACK documentation for details. 
      umfpackFactorizeReturncode()
    template<typename _MatrixType > 
   
 Provides the return status code returned by UmfPack during the numeric factorization.
 
- See also
- 
factorize(), compute() 
    
The documentation for this class was generated from the following file: