W3cubDocs

/Eigen3

Eigen::LevenbergMarquardt

template<typename _FunctorType>
class Eigen::LevenbergMarquardt< _FunctorType >

Performs non linear optimization over a non-linear function, using a variant of the Levenberg Marquardt algorithm.

Check wikipedia for more information. http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm

Inherits internal::no_assignment_operator.

FVectorType & diag ()
RealScalar epsilon () const
RealScalar factor () const
RealScalar fnorm ()
RealScalar ftol () const
FVectorType & fvec ()
RealScalar gnorm ()
RealScalar gtol () const
ComputationInfo info () const
Reports whether the minimization was successful. More...
Index iterations ()
JacobianType & jacobian ()
RealScalar lm_param (void)
JacobianType & matrixR ()
Index maxfev () const
Index nfev ()
Index njev ()
PermutationType permutation ()
void resetParameters ()
void setEpsilon (RealScalar epsfcn)
void setExternalScaling (bool value)
void setFactor (RealScalar factor)
void setFtol (RealScalar ftol)
void setGtol (RealScalar gtol)
void setMaxfev (Index maxfev)
void setXtol (RealScalar xtol)
RealScalar xtol () const

diag()

template<typename _FunctorType >
FVectorType& Eigen::LevenbergMarquardt< _FunctorType >::diag ( )
inline
Returns
a reference to the diagonal of the jacobian

epsilon()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::epsilon ( ) const
inline
Returns
the error precision

factor()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::factor ( ) const
inline
Returns
the step bound for the diagonal shift

fnorm()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::fnorm ( )
inline
Returns
the norm of current vector function

ftol()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::ftol ( ) const
inline
Returns
the tolerance for the norm of the vector function

fvec()

template<typename _FunctorType >
FVectorType& Eigen::LevenbergMarquardt< _FunctorType >::fvec ( )
inline
Returns
a reference to the current vector function

gnorm()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::gnorm ( )
inline
Returns
the norm of the gradient of the error

gtol()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::gtol ( ) const
inline
Returns
the tolerance for the norm of the gradient of the error vector

info()

template<typename _FunctorType >
ComputationInfo Eigen::LevenbergMarquardt< _FunctorType >::info ( ) const
inline

Reports whether the minimization was successful.

Returns
Success if the minimization was successful, NumericalIssue if a numerical problem arises during the minimization process, for example during the QR factorization NoConvergence if the minimization did not converge after the maximum number of function evaluation allowed InvalidInput if the input matrix is invalid

iterations()

template<typename _FunctorType >
Index Eigen::LevenbergMarquardt< _FunctorType >::iterations ( )
inline
Returns
the number of iterations performed

jacobian()

template<typename _FunctorType >
JacobianType& Eigen::LevenbergMarquardt< _FunctorType >::jacobian ( )
inline
Returns
a reference to the matrix where the current Jacobian matrix is stored

lm_param()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::lm_param ( void )
inline
Returns
the LevenbergMarquardt parameter

matrixR()

template<typename _FunctorType >
JacobianType& Eigen::LevenbergMarquardt< _FunctorType >::matrixR ( )
inline
Returns
a reference to the triangular matrix R from the QR of the jacobian matrix.
See also
jacobian()

maxfev()

template<typename _FunctorType >
Index Eigen::LevenbergMarquardt< _FunctorType >::maxfev ( ) const
inline
Returns
the maximum number of function evaluation

nfev()

template<typename _FunctorType >
Index Eigen::LevenbergMarquardt< _FunctorType >::nfev ( )
inline
Returns
the number of functions evaluation

njev()

template<typename _FunctorType >
Index Eigen::LevenbergMarquardt< _FunctorType >::njev ( )
inline
Returns
the number of jacobian evaluation

permutation()

template<typename _FunctorType >
PermutationType Eigen::LevenbergMarquardt< _FunctorType >::permutation ( )
inline

the permutation used in the QR factorization

resetParameters()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::resetParameters ( )
inline

Sets the default parameters

setEpsilon()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::setEpsilon ( RealScalar epsfcn )
inline

Sets the error precision

setExternalScaling()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::setExternalScaling ( bool value )
inline

Use an external Scaling. If set to true, pass a nonzero diagonal to diag()

setFactor()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::setFactor ( RealScalar factor )
inline

Sets the step bound for the diagonal shift

setFtol()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::setFtol ( RealScalar ftol )
inline

Sets the tolerance for the norm of the vector function

setGtol()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::setGtol ( RealScalar gtol )
inline

Sets the tolerance for the norm of the gradient of the error vector

setMaxfev()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::setMaxfev ( Index maxfev )
inline

Sets the maximum number of function evaluation

setXtol()

template<typename _FunctorType >
void Eigen::LevenbergMarquardt< _FunctorType >::setXtol ( RealScalar xtol )
inline

Sets the tolerance for the norm of the solution vector

xtol()

template<typename _FunctorType >
RealScalar Eigen::LevenbergMarquardt< _FunctorType >::xtol ( ) const
inline
Returns
the tolerance for the norm of the solution vector

The documentation for this class was generated from the following files: