Copyright | (c) Daan Leijen 2002 (c) Andriy Palamarchuk 2008 |
---|---|
License | BSD-style |
Maintainer | [email protected] |
Portability | portable |
Safe Haskell | Safe |
Language | Haskell98 |
The IntMap v
type represents a finite map (sometimes called a dictionary) from keys of type Int
to values of type v
.
The functions in Data.IntMap.Strict are careful to force values before installing them in an IntMap
. This is usually more efficient in cases where laziness is not essential. The functions in this module do not do so.
For a walkthrough of the most commonly used functions see the maps introduction.
This module is intended to be imported qualified, to avoid name clashes with Prelude functions:
import Data.IntMap.Lazy (IntMap) import qualified Data.IntMap.Lazy as IntMap
Note that the implementation is generally left-biased. Functions that take two maps as arguments and combine them, such as union
and intersection
, prefer the values in the first argument to those in the second.
The amortized running time is given for each operation, with n referring to the number of entries in the map and W referring to the number of bits in an Int
(32 or 64).
Benchmarks comparing Data.IntMap.Lazy with other dictionary implementations can be found at https://github.com/haskell-perf/dictionaries.
The implementation is based on big-endian patricia trees. This data structure performs especially well on binary operations like union
and intersection
. Additionally, benchmarks show that it is also (much) faster on insertions and deletions when compared to a generic size-balanced map implementation (see Data.Map).
A map of integers to values a
.
Functor IntMap | |
Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methodsfold :: Monoid m => IntMap m -> m Source foldMap :: Monoid m => (a -> m) -> IntMap a -> m Source foldMap' :: Monoid m => (a -> m) -> IntMap a -> m Source foldr :: (a -> b -> b) -> b -> IntMap a -> b Source foldr' :: (a -> b -> b) -> b -> IntMap a -> b Source foldl :: (b -> a -> b) -> b -> IntMap a -> b Source foldl' :: (b -> a -> b) -> b -> IntMap a -> b Source foldr1 :: (a -> a -> a) -> IntMap a -> a Source foldl1 :: (a -> a -> a) -> IntMap a -> a Source toList :: IntMap a -> [a] Source null :: IntMap a -> Bool Source length :: IntMap a -> Int Source elem :: Eq a => a -> IntMap a -> Bool Source maximum :: Ord a => IntMap a -> a Source minimum :: Ord a => IntMap a -> a Source | |
Traversable IntMap | Traverses in order of increasing key. |
Defined in Data.IntMap.Internal | |
Eq1 IntMap | Since: containers-0.5.9 |
Ord1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
Read1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal MethodsliftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (IntMap a) Source liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [IntMap a] Source liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (IntMap a) Source liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [IntMap a] Source | |
Show1 IntMap | Since: containers-0.5.9 |
IsList (IntMap a) | Since: containers-0.5.6.2 |
Eq a => Eq (IntMap a) | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methodsgfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) Source gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) Source toConstr :: IntMap a -> Constr Source dataTypeOf :: IntMap a -> DataType Source dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) Source dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) Source gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a Source gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r Source gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r Source gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] Source gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u Source gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) Source gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) Source gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) Source | |
Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
Read e => Read (IntMap e) | |
Show a => Show (IntMap a) | |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Monoid (IntMap a) | |
NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
type Item (IntMap a) | |
Defined in Data.IntMap.Internal |
O(1). The empty map.
empty == fromList [] size empty == 0
singleton :: Key -> a -> IntMap a Source
O(1). A map of one element.
singleton 1 'a' == fromList [(1, 'a')] size (singleton 1 'a') == 1
fromSet :: (Key -> a) -> IntSet -> IntMap a Source
O(n). Build a map from a set of keys and a function which for each key computes its value.
fromSet (\k -> replicate k 'a') (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")] fromSet undefined Data.IntSet.empty == empty
fromList :: [(Key, a)] -> IntMap a Source
O(n*min(n,W)). Create a map from a list of key/value pairs.
fromList [] == empty fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")] fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")]
fromListWith :: (a -> a -> a) -> [(Key, a)] -> IntMap a Source
O(n*min(n,W)). Create a map from a list of key/value pairs with a combining function. See also fromAscListWith
.
fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "ab"), (5, "cba")] fromListWith (++) [] == empty
fromListWithKey :: (Key -> a -> a -> a) -> [(Key, a)] -> IntMap a Source
O(n*min(n,W)). Build a map from a list of key/value pairs with a combining function. See also fromAscListWithKey'.
let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value fromListWithKey f [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"c")] == fromList [(3, "3:a|b"), (5, "5:c|5:b|a")] fromListWithKey f [] == empty
fromAscList :: [(Key, a)] -> IntMap a Source
O(n). Build a map from a list of key/value pairs where the keys are in ascending order.
fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")]
fromAscListWith :: (a -> a -> a) -> [(Key, a)] -> IntMap a Source
O(n). Build a map from a list of key/value pairs where the keys are in ascending order, with a combining function on equal keys. The precondition (input list is ascending) is not checked.
fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")]
fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key, a)] -> IntMap a Source
O(n). Build a map from a list of key/value pairs where the keys are in ascending order, with a combining function on equal keys. The precondition (input list is ascending) is not checked.
let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value fromAscListWithKey f [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "5:b|a")]
fromDistinctAscList :: forall a. [(Key, a)] -> IntMap a Source
O(n). Build a map from a list of key/value pairs where the keys are in ascending order and all distinct. The precondition (input list is strictly ascending) is not checked.
fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")]
insert :: Key -> a -> IntMap a -> IntMap a Source
O(min(n,W)). Insert a new key/value pair in the map. If the key is already present in the map, the associated value is replaced with the supplied value, i.e. insert
is equivalent to insertWith const
.
insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')] insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')] insert 5 'x' empty == singleton 5 'x'
insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a Source
O(min(n,W)). Insert with a combining function. insertWith f key value mp
will insert the pair (key, value) into mp
if key does not exist in the map. If the key does exist, the function will insert f new_value old_value
.
insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")] insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] insertWith (++) 5 "xxx" empty == singleton 5 "xxx"
insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a Source
O(min(n,W)). Insert with a combining function. insertWithKey f key value mp
will insert the pair (key, value) into mp
if key does not exist in the map. If the key does exist, the function will insert f key new_value old_value
.
let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")] insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] insertWithKey f 5 "xxx" empty == singleton 5 "xxx"
insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a) Source
O(min(n,W)). The expression (insertLookupWithKey f k x map
) is a pair where the first element is equal to (lookup k map
) and the second element equal to (insertWithKey f k x map
).
let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")]) insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")]) insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx")
This is how to define insertLookup
using insertLookupWithKey
:
let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")]) insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")])
delete :: Key -> IntMap a -> IntMap a Source
O(min(n,W)). Delete a key and its value from the map. When the key is not a member of the map, the original map is returned.
delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] delete 5 empty == empty
adjust :: (a -> a) -> Key -> IntMap a -> IntMap a Source
O(min(n,W)). Adjust a value at a specific key. When the key is not a member of the map, the original map is returned.
adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] adjust ("new " ++) 7 empty == empty
adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a Source
O(min(n,W)). Adjust a value at a specific key. When the key is not a member of the map, the original map is returned.
let f key x = (show key) ++ ":new " ++ x adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] adjustWithKey f 7 empty == empty
update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a Source
O(min(n,W)). The expression (update f k map
) updates the value x
at k
(if it is in the map). If (f x
) is Nothing
, the element is deleted. If it is (Just y
), the key k
is bound to the new value y
.
let f x = if x == "a" then Just "new a" else Nothing update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a Source
O(min(n,W)). The expression (update f k map
) updates the value x
at k
(if it is in the map). If (f k x
) is Nothing
, the element is deleted. If it is (Just y
), the key k
is bound to the new value y
.
let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a, IntMap a) Source
O(min(n,W)). Lookup and update. The function returns original value, if it is updated. This is different behavior than updateLookupWithKey
. Returns the original key value if the map entry is deleted.
let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")]) updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a Source
O(min(n,W)). The expression (alter f k map
) alters the value x
at k
, or absence thereof. alter
can be used to insert, delete, or update a value in an IntMap
. In short : lookup k (alter f k m) = f (lookup k m)
.
alterF :: Functor f => (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a) Source
O(log n). The expression (alterF f k map
) alters the value x
at k
, or absence thereof. alterF
can be used to inspect, insert, delete, or update a value in an IntMap
. In short : lookup k $ alterF f k m = f
(lookup k m)
.
Example:
interactiveAlter :: Int -> IntMap String -> IO (IntMap String) interactiveAlter k m = alterF f k m where f Nothing = do putStrLn $ show k ++ " was not found in the map. Would you like to add it?" getUserResponse1 :: IO (Maybe String) f (Just old) = do putStrLn $ "The key is currently bound to " ++ show old ++ ". Would you like to change or delete it?" getUserResponse2 :: IO (Maybe String)
alterF
is the most general operation for working with an individual key that may or may not be in a given map.
Note: alterF
is a flipped version of the at
combinator from Control.Lens.At
.
Since: containers-0.5.8
lookup :: Key -> IntMap a -> Maybe a Source
O(min(n,W)). Lookup the value at a key in the map. See also lookup
.
(!?) :: IntMap a -> Key -> Maybe a infixl 9 Source
O(min(n,W)). Find the value at a key. Returns Nothing
when the element can not be found.
fromList [(5,'a'), (3,'b')] !? 1 == Nothing fromList [(5,'a'), (3,'b')] !? 5 == Just 'a'
Since: containers-0.5.11
(!) :: IntMap a -> Key -> a Source
O(min(n,W)). Find the value at a key. Calls error
when the element can not be found.
fromList [(5,'a'), (3,'b')] ! 1 Error: element not in the map fromList [(5,'a'), (3,'b')] ! 5 == 'a'
findWithDefault :: a -> Key -> IntMap a -> a Source
O(min(n,W)). The expression (findWithDefault def k map)
returns the value at key k
or returns def
when the key is not an element of the map.
findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x' findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'
member :: Key -> IntMap a -> Bool Source
O(min(n,W)). Is the key a member of the map?
member 5 (fromList [(5,'a'), (3,'b')]) == True member 1 (fromList [(5,'a'), (3,'b')]) == False
notMember :: Key -> IntMap a -> Bool Source
O(min(n,W)). Is the key not a member of the map?
notMember 5 (fromList [(5,'a'), (3,'b')]) == False notMember 1 (fromList [(5,'a'), (3,'b')]) == True
lookupLT :: Key -> IntMap a -> Maybe (Key, a) Source
O(log n). Find largest key smaller than the given one and return the corresponding (key, value) pair.
lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
lookupGT :: Key -> IntMap a -> Maybe (Key, a) Source
O(log n). Find smallest key greater than the given one and return the corresponding (key, value) pair.
lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing
lookupLE :: Key -> IntMap a -> Maybe (Key, a) Source
O(log n). Find largest key smaller or equal to the given one and return the corresponding (key, value) pair.
lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
lookupGE :: Key -> IntMap a -> Maybe (Key, a) Source
O(log n). Find smallest key greater or equal to the given one and return the corresponding (key, value) pair.
lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a') lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b') lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing
null :: IntMap a -> Bool Source
O(1). Is the map empty?
Data.IntMap.null (empty) == True Data.IntMap.null (singleton 1 'a') == False
size :: IntMap a -> Int Source
O(n). Number of elements in the map.
size empty == 0 size (singleton 1 'a') == 1 size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3
union :: IntMap a -> IntMap a -> IntMap a Source
O(n+m). The (left-biased) union of two maps. It prefers the first map when duplicate keys are encountered, i.e. (union == unionWith const
).
union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]
unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a Source
O(n+m). The union with a combining function.
unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]
unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a Source
O(n+m). The union with a combining function.
let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]
unions :: Foldable f => f (IntMap a) -> IntMap a Source
The union of a list of maps.
unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] == fromList [(3, "b"), (5, "a"), (7, "C")] unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])] == fromList [(3, "B3"), (5, "A3"), (7, "C")]
unionsWith :: Foldable f => (a -> a -> a) -> f (IntMap a) -> IntMap a Source
The union of a list of maps, with a combining operation.
unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]
difference :: IntMap a -> IntMap b -> IntMap a Source
O(n+m). Difference between two maps (based on keys).
difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"
(\\) :: IntMap a -> IntMap b -> IntMap a infixl 9 Source
Same as difference
.
differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a Source
O(n+m). Difference with a combining function.
let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")]) == singleton 3 "b:B"
differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a Source
O(n+m). Difference with a combining function. When two equal keys are encountered, the combining function is applied to the key and both values. If it returns Nothing
, the element is discarded (proper set difference). If it returns (Just y
), the element is updated with a new value y
.
let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")]) == singleton 3 "3:b|B"
intersection :: IntMap a -> IntMap b -> IntMap a Source
O(n+m). The (left-biased) intersection of two maps (based on keys).
intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"
intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c Source
O(n+m). The intersection with a combining function.
intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"
intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c Source
O(n+m). The intersection with a combining function.
let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"
disjoint :: IntMap a -> IntMap b -> Bool Source
O(n+m). Check whether the key sets of two maps are disjoint (i.e. their intersection
is empty).
disjoint (fromList [(2,'a')]) (fromList [(1,()), (3,())]) == True disjoint (fromList [(2,'a')]) (fromList [(1,'a'), (2,'b')]) == False disjoint (fromList []) (fromList []) == True
disjoint a b == null (intersection a b)
Since: containers-0.6.2.1
mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c) -> IntMap a -> IntMap b -> IntMap c Source
O(n+m). A high-performance universal combining function. Using mergeWithKey
, all combining functions can be defined without any loss of efficiency (with exception of union
, difference
and intersection
, where sharing of some nodes is lost with mergeWithKey
).
Please make sure you know what is going on when using mergeWithKey
, otherwise you can be surprised by unexpected code growth or even corruption of the data structure.
When mergeWithKey
is given three arguments, it is inlined to the call site. You should therefore use mergeWithKey
only to define your custom combining functions. For example, you could define unionWithKey
, differenceWithKey
and intersectionWithKey
as
myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2 myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2 myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
When calling mergeWithKey combine only1 only2
, a function combining two IntMap
s is created, such that
combine
function. Depending on the result, the key is either present in the result with specified value, or is left out;only1
and the output is added to the result;only2
and the output is added to the result.The only1
and only2
methods must return a map with a subset (possibly empty) of the keys of the given map. The values can be modified arbitrarily. Most common variants of only1
and only2
are id
and const empty
, but for example map f
or filterWithKey f
could be used for any f
.
map :: (a -> b) -> IntMap a -> IntMap b Source
O(n). Map a function over all values in the map.
map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]
mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b Source
O(n). Map a function over all values in the map.
let f key x = (show key) ++ ":" ++ x mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]
traverseWithKey :: Applicative t => (Key -> a -> t b) -> IntMap a -> t (IntMap b) Source
O(n). traverseWithKey f s == fromList $ traverse ((k, v) -> (,) k $ f k v) (toList m)
That is, behaves exactly like a regular traverse
except that the traversing function also has access to the key associated with a value.
traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')]) traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')]) == Nothing
mapAccum :: (a -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c) Source
O(n). The function mapAccum
threads an accumulating argument through the map in ascending order of keys.
let f a b = (a ++ b, b ++ "X") mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])
mapAccumWithKey :: (a -> Key -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c) Source
O(n). The function mapAccumWithKey
threads an accumulating argument through the map in ascending order of keys.
let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])
mapAccumRWithKey :: (a -> Key -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c) Source
O(n). The function mapAccumR
threads an accumulating argument through the map in descending order of keys.
mapKeys :: (Key -> Key) -> IntMap a -> IntMap a Source
O(n*min(n,W)). mapKeys f s
is the map obtained by applying f
to each key of s
.
The size of the result may be smaller if f
maps two or more distinct keys to the same new key. In this case the value at the greatest of the original keys is retained.
mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")] mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c" mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"
mapKeysWith :: (a -> a -> a) -> (Key -> Key) -> IntMap a -> IntMap a Source
O(n*min(n,W)). mapKeysWith c f s
is the map obtained by applying f
to each key of s
.
The size of the result may be smaller if f
maps two or more distinct keys to the same new key. In this case the associated values will be combined using c
.
mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab" mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"
mapKeysMonotonic :: (Key -> Key) -> IntMap a -> IntMap a Source
O(n*min(n,W)). mapKeysMonotonic f s == mapKeys f s
, but works only when f
is strictly monotonic. That is, for any values x
and y
, if x
< y
then f x
< f y
. The precondition is not checked. Semi-formally, we have:
and [x < y ==> f x < f y | x <- ls, y <- ls] ==> mapKeysMonotonic f s == mapKeys f s where ls = keys s
This means that f
maps distinct original keys to distinct resulting keys. This function has slightly better performance than mapKeys
.
mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]
foldr :: (a -> b -> b) -> b -> IntMap a -> b Source
O(n). Fold the values in the map using the given right-associative binary operator, such that foldr f z == foldr f z . elems
.
For example,
elems map = foldr (:) [] map
let f a len = len + (length a) foldr f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldl :: (a -> b -> a) -> a -> IntMap b -> a Source
O(n). Fold the values in the map using the given left-associative binary operator, such that foldl f z == foldl f z . elems
.
For example,
elems = reverse . foldl (flip (:)) []
let f len a = len + (length a) foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
foldrWithKey :: (Key -> a -> b -> b) -> b -> IntMap a -> b Source
O(n). Fold the keys and values in the map using the given right-associative binary operator, such that foldrWithKey f z == foldr (uncurry f) z . toAscList
.
For example,
keys map = foldrWithKey (\k x ks -> k:ks) [] map
let f k a result = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" foldrWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (5:a)(3:b)"
foldlWithKey :: (a -> Key -> b -> a) -> a -> IntMap b -> a Source
O(n). Fold the keys and values in the map using the given left-associative binary operator, such that foldlWithKey f z == foldl (\z' (kx, x) -> f z' kx x) z . toAscList
.
For example,
keys = reverse . foldlWithKey (\ks k x -> k:ks) []
let f result k a = result ++ "(" ++ (show k) ++ ":" ++ a ++ ")" foldlWithKey f "Map: " (fromList [(5,"a"), (3,"b")]) == "Map: (3:b)(5:a)"
foldMapWithKey :: Monoid m => (Key -> a -> m) -> IntMap a -> m Source
O(n). Fold the keys and values in the map using the given monoid, such that
foldMapWithKey f = fold . mapWithKey f
This can be an asymptotically faster than foldrWithKey
or foldlWithKey
for some monoids.
Since: containers-0.5.4
foldr' :: (a -> b -> b) -> b -> IntMap a -> b Source
O(n). A strict version of foldr
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
foldl' :: (a -> b -> a) -> a -> IntMap b -> a Source
O(n). A strict version of foldl
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
foldrWithKey' :: (Key -> a -> b -> b) -> b -> IntMap a -> b Source
O(n). A strict version of foldrWithKey
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
foldlWithKey' :: (a -> Key -> b -> a) -> a -> IntMap b -> a Source
O(n). A strict version of foldlWithKey
. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
elems :: IntMap a -> [a] Source
O(n). Return all elements of the map in the ascending order of their keys. Subject to list fusion.
elems (fromList [(5,"a"), (3,"b")]) == ["b","a"] elems empty == []
keys :: IntMap a -> [Key] Source
O(n). Return all keys of the map in ascending order. Subject to list fusion.
keys (fromList [(5,"a"), (3,"b")]) == [3,5] keys empty == []
assocs :: IntMap a -> [(Key, a)] Source
O(n). An alias for toAscList
. Returns all key/value pairs in the map in ascending key order. Subject to list fusion.
assocs (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] assocs empty == []
keysSet :: IntMap a -> IntSet Source
O(n*min(n,W)). The set of all keys of the map.
keysSet (fromList [(5,"a"), (3,"b")]) == Data.IntSet.fromList [3,5] keysSet empty == Data.IntSet.empty
toList :: IntMap a -> [(Key, a)] Source
O(n). Convert the map to a list of key/value pairs. Subject to list fusion.
toList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")] toList empty == []
toAscList :: IntMap a -> [(Key, a)] Source
O(n). Convert the map to a list of key/value pairs where the keys are in ascending order. Subject to list fusion.
toAscList (fromList [(5,"a"), (3,"b")]) == [(3,"b"), (5,"a")]
toDescList :: IntMap a -> [(Key, a)] Source
O(n). Convert the map to a list of key/value pairs where the keys are in descending order. Subject to list fusion.
toDescList (fromList [(5,"a"), (3,"b")]) == [(5,"a"), (3,"b")]
filter :: (a -> Bool) -> IntMap a -> IntMap a Source
O(n). Filter all values that satisfy some predicate.
filter (> "a") (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" filter (> "x") (fromList [(5,"a"), (3,"b")]) == empty filter (< "a") (fromList [(5,"a"), (3,"b")]) == empty
filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a Source
O(n). Filter all keys/values that satisfy some predicate.
filterWithKey (\k _ -> k > 4) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
restrictKeys :: IntMap a -> IntSet -> IntMap a Source
O(n+m). The restriction of a map to the keys in a set.
m `restrictKeys` s = filterWithKey (k _ -> k `member` s) m
Since: containers-0.5.8
withoutKeys :: IntMap a -> IntSet -> IntMap a Source
O(n+m). Remove all the keys in a given set from a map.
m `withoutKeys` s = filterWithKey (k _ -> k `notMember` s) m
Since: containers-0.5.8
partition :: (a -> Bool) -> IntMap a -> (IntMap a, IntMap a) Source
O(n). Partition the map according to some predicate. The first map contains all elements that satisfy the predicate, the second all elements that fail the predicate. See also split
.
partition (> "a") (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") partition (< "x") (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) partition (> "x") (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])
partitionWithKey :: (Key -> a -> Bool) -> IntMap a -> (IntMap a, IntMap a) Source
O(n). Partition the map according to some predicate. The first map contains all elements that satisfy the predicate, the second all elements that fail the predicate. See also split
.
partitionWithKey (\ k _ -> k > 3) (fromList [(5,"a"), (3,"b")]) == (singleton 5 "a", singleton 3 "b") partitionWithKey (\ k _ -> k < 7) (fromList [(5,"a"), (3,"b")]) == (fromList [(3, "b"), (5, "a")], empty) partitionWithKey (\ k _ -> k > 7) (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3, "b"), (5, "a")])
mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b Source
O(n). Map values and collect the Just
results.
let f x = if x == "a" then Just "new a" else Nothing mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"
mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b Source
O(n). Map keys/values and collect the Just
results.
let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"
mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c) Source
O(n). Map values and separate the Left
and Right
results.
let f a = if a < "c" then Left a else Right a mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c) Source
O(n). Map keys/values and separate the Left
and Right
results.
let f k a = if k < 5 then Left (k * 2) else Right (a ++ a) mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])
split :: Key -> IntMap a -> (IntMap a, IntMap a) Source
O(min(n,W)). The expression (split k map
) is a pair (map1,map2)
where all keys in map1
are lower than k
and all keys in map2
larger than k
. Any key equal to k
is found in neither map1
nor map2
.
split 2 (fromList [(5,"a"), (3,"b")]) == (empty, fromList [(3,"b"), (5,"a")]) split 3 (fromList [(5,"a"), (3,"b")]) == (empty, singleton 5 "a") split 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", singleton 5 "a") split 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", empty) split 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], empty)
splitLookup :: Key -> IntMap a -> (IntMap a, Maybe a, IntMap a) Source
O(min(n,W)). Performs a split
but also returns whether the pivot key was found in the original map.
splitLookup 2 (fromList [(5,"a"), (3,"b")]) == (empty, Nothing, fromList [(3,"b"), (5,"a")]) splitLookup 3 (fromList [(5,"a"), (3,"b")]) == (empty, Just "b", singleton 5 "a") splitLookup 4 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Nothing, singleton 5 "a") splitLookup 5 (fromList [(5,"a"), (3,"b")]) == (singleton 3 "b", Just "a", empty) splitLookup 6 (fromList [(5,"a"), (3,"b")]) == (fromList [(3,"b"), (5,"a")], Nothing, empty)
splitRoot :: IntMap a -> [IntMap a] Source
O(1). Decompose a map into pieces based on the structure of the underlying tree. This function is useful for consuming a map in parallel.
No guarantee is made as to the sizes of the pieces; an internal, but deterministic process determines this. However, it is guaranteed that the pieces returned will be in ascending order (all elements in the first submap less than all elements in the second, and so on).
Examples:
splitRoot (fromList (zip [1..6::Int] ['a'..])) == [fromList [(1,'a'),(2,'b'),(3,'c')],fromList [(4,'d'),(5,'e'),(6,'f')]]
splitRoot empty == []
Note that the current implementation does not return more than two submaps, but you should not depend on this behaviour because it can change in the future without notice.
isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool Source
O(n+m). Is this a submap? Defined as (isSubmapOf = isSubmapOfBy (==)
).
isSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool Source
O(n+m). The expression (isSubmapOfBy f m1 m2
) returns True
if all keys in m1
are in m2
, and when f
returns True
when applied to their respective values. For example, the following expressions are all True
:
isSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) isSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)])
But the following are all False
:
isSubmapOfBy (==) (fromList [(1,2)]) (fromList [(1,1),(2,2)]) isSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) isSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)])
isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool Source
O(n+m). Is this a proper submap? (ie. a submap but not equal). Defined as (isProperSubmapOf = isProperSubmapOfBy (==)
).
isProperSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool Source
O(n+m). Is this a proper submap? (ie. a submap but not equal). The expression (isProperSubmapOfBy f m1 m2
) returns True
when m1
and m2
are not equal, all keys in m1
are in m2
, and when f
returns True
when applied to their respective values. For example, the following expressions are all True
:
isProperSubmapOfBy (==) (fromList [(1,1)]) (fromList [(1,1),(2,2)]) isProperSubmapOfBy (<=) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
But the following are all False
:
isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1),(2,2)]) isProperSubmapOfBy (==) (fromList [(1,1),(2,2)]) (fromList [(1,1)]) isProperSubmapOfBy (<) (fromList [(1,1)]) (fromList [(1,1),(2,2)])
lookupMin :: IntMap a -> Maybe (Key, a) Source
O(min(n,W)). The minimal key of the map. Returns Nothing
if the map is empty.
lookupMax :: IntMap a -> Maybe (Key, a) Source
O(min(n,W)). The maximal key of the map. Returns Nothing
if the map is empty.
findMin :: IntMap a -> (Key, a) Source
O(min(n,W)). The minimal key of the map. Calls error
if the map is empty. Use minViewWithKey
if the map may be empty.
findMax :: IntMap a -> (Key, a) Source
O(min(n,W)). The maximal key of the map. Calls error
if the map is empty. Use maxViewWithKey
if the map may be empty.
deleteMin :: IntMap a -> IntMap a Source
O(min(n,W)). Delete the minimal key. Returns an empty map if the map is empty.
Note that this is a change of behaviour for consistency with Map
– versions prior to 0.5 threw an error if the IntMap
was already empty.
deleteMax :: IntMap a -> IntMap a Source
O(min(n,W)). Delete the maximal key. Returns an empty map if the map is empty.
Note that this is a change of behaviour for consistency with Map
– versions prior to 0.5 threw an error if the IntMap
was already empty.
deleteFindMin :: IntMap a -> ((Key, a), IntMap a) Source
O(min(n,W)). Delete and find the minimal element. This function throws an error if the map is empty. Use minViewWithKey
if the map may be empty.
deleteFindMax :: IntMap a -> ((Key, a), IntMap a) Source
O(min(n,W)). Delete and find the maximal element. This function throws an error if the map is empty. Use maxViewWithKey
if the map may be empty.
updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a Source
O(min(n,W)). Update the value at the minimal key.
updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")] updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a Source
O(min(n,W)). Update the value at the maximal key.
updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")] updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a Source
O(min(n,W)). Update the value at the minimal key.
updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")] updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a Source
O(min(n,W)). Update the value at the maximal key.
updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")] updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
minView :: IntMap a -> Maybe (a, IntMap a) Source
O(min(n,W)). Retrieves the minimal key of the map, and the map stripped of that element, or Nothing
if passed an empty map.
maxView :: IntMap a -> Maybe (a, IntMap a) Source
O(min(n,W)). Retrieves the maximal key of the map, and the map stripped of that element, or Nothing
if passed an empty map.
minViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a) Source
O(min(n,W)). Retrieves the minimal (key,value) pair of the map, and the map stripped of that element, or Nothing
if passed an empty map.
minViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((3,"b"), singleton 5 "a") minViewWithKey empty == Nothing
maxViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a) Source
O(min(n,W)). Retrieves the maximal (key,value) pair of the map, and the map stripped of that element, or Nothing
if passed an empty map.
maxViewWithKey (fromList [(5,"a"), (3,"b")]) == Just ((5,"a"), singleton 3 "b") maxViewWithKey empty == Nothing
showTree :: Whoops "Data.IntMap.showTree has moved to Data.IntMap.Internal.Debug.showTree" => IntMap a -> String Source
showTree
has moved to showTree
showTreeWith :: Whoops "Data.IntMap.showTreeWith has moved to Data.IntMap.Internal.Debug.showTreeWith" => Bool -> Bool -> IntMap a -> String Source
showTreeWith
has moved to showTreeWith
© The University of Glasgow and others
Licensed under a BSD-style license (see top of the page).
https://downloads.haskell.org/~ghc/8.8.3/docs/html/libraries/containers-0.6.2.1/Data-IntMap-Lazy.html