This page describes the lifecycle of a Pod. Pods follow a defined lifecycle, starting in the Pending
phase, moving through Running
if at least one of its primary containers starts OK, and then through either the Succeeded
or Failed
phases depending on whether any container in the Pod terminated in failure.
Whilst a Pod is running, the kubelet is able to restart containers to handle some kind of faults. Within a Pod, Kubernetes tracks different container states and determines what action to take to make the Pod healthy again.
In the Kubernetes API, Pods have both a specification and an actual status. The status for a Pod object consists of a set of Pod conditions. You can also inject custom readiness information into the condition data for a Pod, if that is useful to your application.
Pods are only scheduled once in their lifetime. Once a Pod is scheduled (assigned) to a Node, the Pod runs on that Node until it stops or is terminated.
Like individual application containers, Pods are considered to be relatively ephemeral (rather than durable) entities. Pods are created, assigned a unique ID (UID), and scheduled to nodes where they remain until termination (according to restart policy) or deletion. If a Node dies, the Pods scheduled to that node are scheduled for deletion after a timeout period.
Pods do not, by themselves, self-heal. If a Pod is scheduled to a node that then fails, the Pod is deleted; likewise, a Pod won't survive an eviction due to a lack of resources or Node maintenance. Kubernetes uses a higher-level abstraction, called a controller, that handles the work of managing the relatively disposable Pod instances.
A given Pod (as defined by a UID) is never "rescheduled" to a different node; instead, that Pod can be replaced by a new, near-identical Pod, with even the same name if desired, but with a different UID.
When something is said to have the same lifetime as a Pod, such as a volume, that means that the thing exists as long as that specific Pod (with that exact UID) exists. If that Pod is deleted for any reason, and even if an identical replacement is created, the related thing (a volume, in this example) is also destroyed and created anew.
A multi-container Pod that contains a file puller and a web server that uses a persistent volume for shared storage between the containers.
A Pod's status
field is a PodStatus object, which has a phase
field.
The phase of a Pod is a simple, high-level summary of where the Pod is in its lifecycle. The phase is not intended to be a comprehensive rollup of observations of container or Pod state, nor is it intended to be a comprehensive state machine.
The number and meanings of Pod phase values are tightly guarded. Other than what is documented here, nothing should be assumed about Pods that have a given phase
value.
Here are the possible values for phase
:
Value | Description |
---|---|
Pending | The Pod has been accepted by the Kubernetes cluster, but one or more of the containers has not been set up and made ready to run. This includes time a Pod spends waiting to be scheduled as well as the time spent downloading container images over the network. |
Running | The Pod has been bound to a node, and all of the containers have been created. At least one container is still running, or is in the process of starting or restarting. |
Succeeded | All containers in the Pod have terminated in success, and will not be restarted. |
Failed | All containers in the Pod have terminated, and at least one container has terminated in failure. That is, the container either exited with non-zero status or was terminated by the system. |
Unknown | For some reason the state of the Pod could not be obtained. This phase typically occurs due to an error in communicating with the node where the Pod should be running. |
Terminating
by some kubectl commands. This Terminating
status is not one of the Pod phases. A Pod is granted a term to terminate gracefully, which defaults to 30 seconds. You can use the flag --force
to terminate a Pod by force. If a node dies or is disconnected from the rest of the cluster, Kubernetes applies a policy for setting the phase
of all Pods on the lost node to Failed.
As well as the phase of the Pod overall, Kubernetes tracks the state of each container inside a Pod. You can use container lifecycle hooks to trigger events to run at certain points in a container's lifecycle.
Once the scheduler assigns a Pod to a Node, the kubelet starts creating containers for that Pod using a container runtime. There are three possible container states: Waiting
, Running
, and Terminated
.
To check the state of a Pod's containers, you can use kubectl describe pod <name-of-pod>
. The output shows the state for each container within that Pod.
Each state has a specific meaning:
Waiting
If a container is not in either the Running
or Terminated
state, it is Waiting
. A container in the Waiting
state is still running the operations it requires in order to complete start up: for example, pulling the container image from a container image registry, or applying Secret data. When you use kubectl
to query a Pod with a container that is Waiting
, you also see a Reason field to summarize why the container is in that state.
Running
The Running
status indicates that a container is executing without issues. If there was a postStart
hook configured, it has already executed and finished. When you use kubectl
to query a Pod with a container that is Running
, you also see information about when the container entered the Running
state.
Terminated
A container in the Terminated
state began execution and then either ran to completion or failed for some reason. When you use kubectl
to query a Pod with a container that is Terminated
, you see a reason, an exit code, and the start and finish time for that container's period of execution.
If a container has a preStop
hook configured, that runs before the container enters the Terminated
state.
The spec
of a Pod has a restartPolicy
field with possible values Always, OnFailure, and Never. The default value is Always.
The restartPolicy
applies to all containers in the Pod. restartPolicy
only refers to restarts of the containers by the kubelet on the same node. After containers in a Pod exit, the kubelet restarts them with an exponential back-off delay (10s, 20s, 40s, …), that is capped at five minutes. Once a container has executed for 10 minutes without any problems, the kubelet resets the restart backoff timer for that container.
A Pod has a PodStatus, which has an array of PodConditions through which the Pod has or has not passed:
PodScheduled
: the Pod has been scheduled to a node.ContainersReady
: all containers in the Pod are ready.Initialized
: all init containers have completed successfully.Ready
: the Pod is able to serve requests and should be added to the load balancing pools of all matching Services.Field name | Description |
---|---|
type | Name of this Pod condition. |
status | Indicates whether that condition is applicable, with possible values "True ", "False ", or "Unknown ". |
lastProbeTime | Timestamp of when the Pod condition was last probed. |
lastTransitionTime | Timestamp for when the Pod last transitioned from one status to another. |
reason | Machine-readable, UpperCamelCase text indicating the reason for the condition's last transition. |
message | Human-readable message indicating details about the last status transition. |
Kubernetes v1.14 [stable]
Your application can inject extra feedback or signals into PodStatus: Pod readiness. To use this, set readinessGates
in the Pod's spec
to specify a list of additional conditions that the kubelet evaluates for Pod readiness.
Readiness gates are determined by the current state of status.condition
fields for the Pod. If Kubernetes cannot find such a condition in the status.conditions
field of a Pod, the status of the condition is defaulted to "False
".
Here is an example:
kind: Pod ... spec: readinessGates: - conditionType: "www.example.com/feature-1" status: conditions: - type: Ready # a built in PodCondition status: "False" lastProbeTime: null lastTransitionTime: 2018-01-01T00:00:00Z - type: "www.example.com/feature-1" # an extra PodCondition status: "False" lastProbeTime: null lastTransitionTime: 2018-01-01T00:00:00Z containerStatuses: - containerID: docker://abcd... ready: true ...
The Pod conditions you add must have names that meet the Kubernetes label key format.
The kubectl patch
command does not support patching object status. To set these status.conditions
for the pod, applications and operators should use the PATCH
action. You can use a Kubernetes client library to write code that sets custom Pod conditions for Pod readiness.
For a Pod that uses custom conditions, that Pod is evaluated to be ready only when both the following statements apply:
readinessGates
are True
.When a Pod's containers are Ready but at least one custom condition is missing or False
, the kubelet sets the Pod's condition to ContainersReady
.
A probe is a diagnostic performed periodically by the kubelet on a container. To perform a diagnostic, the kubelet either executes code within the container, or makes a network request.
There are four different ways to check a container using a probe. Each probe must define exactly one of these four mechanisms:
exec
grpc
status
of the response is SERVING
.GRPCContainerProbe
feature gate.httpGet
GET
request against the Pod's IP address on a specified port and path. The diagnostic is considered successful if the response has a status code greater than or equal to 200 and less than 400.tcpSocket
Each probe has one of three results:
Success
Failure
Unknown
The kubelet can optionally perform and react to three kinds of probes on running containers:
livenessProbe
Success
.readinessProbe
Failure
. If a container does not provide a readiness probe, the default state is Success
.startupProbe
Success
.For more information about how to set up a liveness, readiness, or startup probe, see Configure Liveness, Readiness and Startup Probes.
Kubernetes v1.0 [stable]
If the process in your container is able to crash on its own whenever it encounters an issue or becomes unhealthy, you do not necessarily need a liveness probe; the kubelet will automatically perform the correct action in accordance with the Pod's restartPolicy
.
If you'd like your container to be killed and restarted if a probe fails, then specify a liveness probe, and specify a restartPolicy
of Always or OnFailure.
Kubernetes v1.0 [stable]
If you'd like to start sending traffic to a Pod only when a probe succeeds, specify a readiness probe. In this case, the readiness probe might be the same as the liveness probe, but the existence of the readiness probe in the spec means that the Pod will start without receiving any traffic and only start receiving traffic after the probe starts succeeding.
If you want your container to be able to take itself down for maintenance, you can specify a readiness probe that checks an endpoint specific to readiness that is different from the liveness probe.
If your app has a strict dependency on back-end services, you can implement both a liveness and a readiness probe. The liveness probe passes when the app itself is healthy, but the readiness probe additionally checks that each required back-end service is available. This helps you avoid directing traffic to Pods that can only respond with error messages.
If your container needs to work on loading large data, configuration files, or migrations during startup, you can use a startup probe. However, if you want to detect the difference between an app that has failed and an app that is still processing its startup data, you might prefer a readiness probe.
Kubernetes v1.20 [stable]
Startup probes are useful for Pods that have containers that take a long time to come into service. Rather than set a long liveness interval, you can configure a separate configuration for probing the container as it starts up, allowing a time longer than the liveness interval would allow.
If your container usually starts in more than initialDelaySeconds + failureThreshold × periodSeconds
, you should specify a startup probe that checks the same endpoint as the liveness probe. The default for periodSeconds
is 10s. You should then set its failureThreshold
high enough to allow the container to start, without changing the default values of the liveness probe. This helps to protect against deadlocks.
Because Pods represent processes running on nodes in the cluster, it is important to allow those processes to gracefully terminate when they are no longer needed (rather than being abruptly stopped with a KILL
signal and having no chance to clean up).
The design aim is for you to be able to request deletion and know when processes terminate, but also be able to ensure that deletes eventually complete. When you request deletion of a Pod, the cluster records and tracks the intended grace period before the Pod is allowed to be forcefully killed. With that forceful shutdown tracking in place, the kubelet attempts graceful shutdown.
Typically, the container runtime sends a TERM signal to the main process in each container. Many container runtimes respect the STOPSIGNAL
value defined in the container image and send this instead of TERM. Once the grace period has expired, the KILL signal is sent to any remaining processes, and the Pod is then deleted from the API Server. If the kubelet or the container runtime's management service is restarted while waiting for processes to terminate, the cluster retries from the start including the full original grace period.
An example flow:
kubectl
tool to manually delete a specific Pod, with the default grace period (30 seconds).kubectl describe
to check on the Pod you're deleting, that Pod shows up as "Terminating". On the node where the Pod is running: as soon as the kubelet sees that a Pod has been marked as terminating (a graceful shutdown duration has been set), the kubelet begins the local Pod shutdown process. preStop
hook, the kubelet runs that hook inside of the container. If the preStop
hook is still running after the grace period expires, the kubelet requests a small, one-off grace period extension of 2 seconds. preStop
hook needs longer to complete than the default grace period allows, you must modify terminationGracePeriodSeconds
to suit this. preStop
hook to synchronize. SIGKILL
to any processes still running in any container in the Pod. The kubelet also cleans up a hidden pause
container if that container runtime uses one.By default, all deletes are graceful within 30 seconds. The kubectl delete
command supports the --grace-period=<seconds>
option which allows you to override the default and specify your own value.
Setting the grace period to 0
forcibly and immediately deletes the Pod from the API server. If the pod was still running on a node, that forcible deletion triggers the kubelet to begin immediate cleanup.
--force
along with --grace-period=0
in order to perform force deletions. When a force deletion is performed, the API server does not wait for confirmation from the kubelet that the Pod has been terminated on the node it was running on. It removes the Pod in the API immediately so a new Pod can be created with the same name. On the node, Pods that are set to terminate immediately will still be given a small grace period before being force killed.
If you need to force-delete Pods that are part of a StatefulSet, refer to the task documentation for deleting Pods from a StatefulSet.
For failed Pods, the API objects remain in the cluster's API until a human or controller process explicitly removes them.
The control plane cleans up terminated Pods (with a phase of Succeeded
or Failed
), when the number of Pods exceeds the configured threshold (determined by terminated-pod-gc-threshold
in the kube-controller-manager). This avoids a resource leak as Pods are created and terminated over time.
Get hands-on experience attaching handlers to container lifecycle events.
Get hands-on experience configuring Liveness, Readiness and Startup Probes.
Learn more about container lifecycle hooks.
For detailed information about Pod and container status in the API, see the API reference documentation covering .status
for Pod.
© 2022 The Kubernetes Authors
Documentation Distributed under CC BY 4.0.
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle