For a visual representation of the Matplotlib colormaps, see:
A module for converting numbers or color arguments to RGB or RGBA.
RGB and RGBA are sequences of, respectively, 3 or 4 floats in the range 0-1.
This module includes functions and classes for color specification conversions, and for mapping numbers to colors in a 1-D array of colors called a colormap.
Mapping data onto colors using a colormap typically involves two steps: a data array is first mapped onto the range 0-1 using a subclass of Normalize
, then this number is mapped to a color using a subclass of Colormap
. Two are provided here: LinearSegmentedColormap
, which uses piecewise-linear interpolation to define colormaps, and ListedColormap
, which makes a colormap from a list of colors.
See also
Creating Colormaps in Matplotlib for examples of how to make colormaps and
Choosing Colormaps in Matplotlib for a list of built-in colormaps.
Colormap Normalization for more details about data normalization
More colormaps are available at palettable.
The module also provides functions for checking whether an object can be interpreted as a color (is_color_like()
), for converting such an object to an RGBA tuple (to_rgba()
) or to an HTML-like hex string in the #rrggbb
format (to_hex()
), and a sequence of colors to an (n, 4)
RGBA array (to_rgba_array()
). Caching is used for efficiency.
Matplotlib recognizes the following formats to specify a color:
[0, 1]
(e.g., (0.1, 0.2, 0.5)
or (0.1, 0.2, 0.5, 0.3)
);'#0f0f0f'
or '#0f0f0f80'
; case-insensitive);[0, 1]
inclusive for gray level (e.g., '0.5'
);{'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}
;'xkcd:'
(e.g., 'xkcd:sky blue'
; case insensitive);{'tab:blue', 'tab:orange', 'tab:green', 'tab:red',
'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'}
(case-insensitive);'C'
followed by a number, which is an index into the default property cycle (matplotlib.rcParams['axes.prop_cycle']
); the indexing is intended to occur at rendering time, and defaults to black if the cycle does not include color.
BoundaryNorm (boundaries, ncolors[, clip]) | Generate a colormap index based on discrete intervals. |
Colormap (name[, N]) | Baseclass for all scalar to RGBA mappings. |
DivergingNorm (vcenter[, vmin, vmax]) | Normalize data with a set center. |
LightSource ([azdeg, altdeg, hsv_min_val, ...]) | Create a light source coming from the specified azimuth and elevation. |
LinearSegmentedColormap (name, segmentdata[, ...]) | Colormap objects based on lookup tables using linear segments. |
ListedColormap (colors[, name, N]) | Colormap object generated from a list of colors. |
LogNorm ([vmin, vmax, clip]) | Normalize a given value to the 0-1 range on a log scale. |
NoNorm ([vmin, vmax, clip]) | Dummy replacement for Normalize , for the case where we want to use indices directly in a ScalarMappable . |
Normalize ([vmin, vmax, clip]) | A class which, when called, can normalize data into the [0.0, 1.0] interval. |
PowerNorm (gamma[, vmin, vmax, clip]) | Linearly map a given value to the 0-1 range and then apply a power-law normalization over that range. |
SymLogNorm (linthresh[, linscale, vmin, ...]) | The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin. |
from_levels_and_colors (levels, colors[, extend]) | A helper routine to generate a cmap and a norm instance which behave similar to contourf's levels and colors arguments. |
hsv_to_rgb (hsv) | Convert hsv values to rgb. |
rgb_to_hsv (arr) | Convert float rgb values (in the range [0, 1]), in a numpy array to hsv values. |
to_hex (c[, keep_alpha]) | Convert c to a hex color. |
to_rgb (c) | Convert c to an RGB color, silently dropping the alpha channel. |
to_rgba (c[, alpha]) | Convert c to an RGBA color. |
to_rgba_array (c[, alpha]) | Convert c to a (n, 4) array of RGBA colors. |
is_color_like (c) | Return whether c can be interpreted as an RGB(A) color. |
makeMappingArray (N, data[, gamma]) | Create an N -element 1-d lookup table. |
get_named_colors_mapping () | Return the global mapping of names to named colors. |
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.1.1/api/colors_api.html