Node.js provides an implementation of the standard Web Crypto API.
Use globalThis.crypto
or require('node:crypto').webcrypto
to access this module.
const { subtle } = globalThis.crypto; (async function() { const key = await subtle.generateKey({ name: 'HMAC', hash: 'SHA-256', length: 256, }, true, ['sign', 'verify']); const enc = new TextEncoder(); const message = enc.encode('I love cupcakes'); const digest = await subtle.sign({ name: 'HMAC', }, key, message); })(); copy
The <SubtleCrypto> class can be used to generate symmetric (secret) keys or asymmetric key pairs (public key and private key).
const { subtle } = globalThis.crypto; async function generateAesKey(length = 256) { const key = await subtle.generateKey({ name: 'AES-CBC', length, }, true, ['encrypt', 'decrypt']); return key; } copy
const { subtle } = globalThis.crypto; async function generateEcKey(namedCurve = 'P-521') { const { publicKey, privateKey, } = await subtle.generateKey({ name: 'ECDSA', namedCurve, }, true, ['sign', 'verify']); return { publicKey, privateKey }; } copy
const { subtle } = globalThis.crypto; async function generateEd25519Key() { return subtle.generateKey({ name: 'Ed25519', }, true, ['sign', 'verify']); } async function generateX25519Key() { return subtle.generateKey({ name: 'X25519', }, true, ['deriveKey']); } copy
const { subtle } = globalThis.crypto; async function generateHmacKey(hash = 'SHA-256') { const key = await subtle.generateKey({ name: 'HMAC', hash, }, true, ['sign', 'verify']); return key; } copy
const { subtle } = globalThis.crypto; const publicExponent = new Uint8Array([1, 0, 1]); async function generateRsaKey(modulusLength = 2048, hash = 'SHA-256') { const { publicKey, privateKey, } = await subtle.generateKey({ name: 'RSASSA-PKCS1-v1_5', modulusLength, publicExponent, hash, }, true, ['sign', 'verify']); return { publicKey, privateKey }; } copy
const crypto = globalThis.crypto; async function aesEncrypt(plaintext) { const ec = new TextEncoder(); const key = await generateAesKey(); const iv = crypto.getRandomValues(new Uint8Array(16)); const ciphertext = await crypto.subtle.encrypt({ name: 'AES-CBC', iv, }, key, ec.encode(plaintext)); return { key, iv, ciphertext, }; } async function aesDecrypt(ciphertext, key, iv) { const dec = new TextDecoder(); const plaintext = await crypto.subtle.decrypt({ name: 'AES-CBC', iv, }, key, ciphertext); return dec.decode(plaintext); } copy
const { subtle } = globalThis.crypto; async function generateAndExportHmacKey(format = 'jwk', hash = 'SHA-512') { const key = await subtle.generateKey({ name: 'HMAC', hash, }, true, ['sign', 'verify']); return subtle.exportKey(format, key); } async function importHmacKey(keyData, format = 'jwk', hash = 'SHA-512') { const key = await subtle.importKey(format, keyData, { name: 'HMAC', hash, }, true, ['sign', 'verify']); return key; } copy
const { subtle } = globalThis.crypto; async function generateAndWrapHmacKey(format = 'jwk', hash = 'SHA-512') { const [ key, wrappingKey, ] = await Promise.all([ subtle.generateKey({ name: 'HMAC', hash, }, true, ['sign', 'verify']), subtle.generateKey({ name: 'AES-KW', length: 256, }, true, ['wrapKey', 'unwrapKey']), ]); const wrappedKey = await subtle.wrapKey(format, key, wrappingKey, 'AES-KW'); return { wrappedKey, wrappingKey }; } async function unwrapHmacKey( wrappedKey, wrappingKey, format = 'jwk', hash = 'SHA-512') { const key = await subtle.unwrapKey( format, wrappedKey, wrappingKey, 'AES-KW', { name: 'HMAC', hash }, true, ['sign', 'verify']); return key; } copy
const { subtle } = globalThis.crypto; async function sign(key, data) { const ec = new TextEncoder(); const signature = await subtle.sign('RSASSA-PKCS1-v1_5', key, ec.encode(data)); return signature; } async function verify(key, signature, data) { const ec = new TextEncoder(); const verified = await subtle.verify( 'RSASSA-PKCS1-v1_5', key, signature, ec.encode(data)); return verified; } copy
const { subtle } = globalThis.crypto; async function pbkdf2(pass, salt, iterations = 1000, length = 256) { const ec = new TextEncoder(); const key = await subtle.importKey( 'raw', ec.encode(pass), 'PBKDF2', false, ['deriveBits']); const bits = await subtle.deriveBits({ name: 'PBKDF2', hash: 'SHA-512', salt: ec.encode(salt), iterations, }, key, length); return bits; } async function pbkdf2Key(pass, salt, iterations = 1000, length = 256) { const ec = new TextEncoder(); const keyMaterial = await subtle.importKey( 'raw', ec.encode(pass), 'PBKDF2', false, ['deriveKey']); const key = await subtle.deriveKey({ name: 'PBKDF2', hash: 'SHA-512', salt: ec.encode(salt), iterations, }, keyMaterial, { name: 'AES-GCM', length: 256, }, true, ['encrypt', 'decrypt']); return key; } copy
const { subtle } = globalThis.crypto; async function digest(data, algorithm = 'SHA-512') { const ec = new TextEncoder(); const digest = await subtle.digest(algorithm, ec.encode(data)); return digest; } copy
The table details the algorithms supported by the Node.js Web Crypto API implementation and the APIs supported for each:
Algorithm | generateKey |
exportKey |
importKey |
encrypt |
decrypt |
wrapKey |
unwrapKey |
deriveBits |
deriveKey |
sign |
verify |
digest |
---|---|---|---|---|---|---|---|---|---|---|---|---|
'RSASSA-PKCS1-v1_5' |
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'RSA-PSS' |
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'RSA-OAEP' |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
'ECDSA' |
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'Ed25519' 1
|
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'Ed448' 1
|
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'ECDH' |
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'X25519' 1
|
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'X448' 1
|
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'AES-CTR' |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
'AES-CBC' |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
'AES-GCM' |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |||||
'AES-KW' |
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'HMAC' |
✔ | ✔ | ✔ | ✔ | ✔ | |||||||
'HKDF' |
✔ | ✔ | ✔ | ✔ | ||||||||
'PBKDF2' |
✔ | ✔ | ✔ | ✔ | ||||||||
'SHA-1' |
✔ | |||||||||||
'SHA-256' |
✔ | |||||||||||
'SHA-384' |
✔ | |||||||||||
'SHA-512' |
✔ |
Crypto
globalThis.crypto
is an instance of the Crypto
class. Crypto
is a singleton that provides access to the remainder of the crypto API.
crypto.subtle
Provides access to the SubtleCrypto
API.
crypto.getRandomValues(typedArray)
typedArray
<Buffer> | <TypedArray>
Generates cryptographically strong random values. The given typedArray
is filled with random values, and a reference to typedArray
is returned.
The given typedArray
must be an integer-based instance of <TypedArray>, i.e. Float32Array
and Float64Array
are not accepted.
An error will be thrown if the given typedArray
is larger than 65,536 bytes.
crypto.randomUUID()
Generates a random RFC 4122 version 4 UUID. The UUID is generated using a cryptographic pseudorandom number generator.
CryptoKey
cryptoKey.algorithm
An object detailing the algorithm for which the key can be used along with additional algorithm-specific parameters.
Read-only.
cryptoKey.extractable
When true
, the <CryptoKey> can be extracted using either subtleCrypto.exportKey()
or subtleCrypto.wrapKey()
.
Read-only.
cryptoKey.type
'secret'
, 'private'
, or 'public'
.A string identifying whether the key is a symmetric ('secret'
) or asymmetric ('private'
or 'public'
) key.
cryptoKey.usages
An array of strings identifying the operations for which the key may be used.
The possible usages are:
'encrypt'
- The key may be used to encrypt data.'decrypt'
- The key may be used to decrypt data.'sign'
- The key may be used to generate digital signatures.'verify'
- The key may be used to verify digital signatures.'deriveKey'
- The key may be used to derive a new key.'deriveBits'
- The key may be used to derive bits.'wrapKey'
- The key may be used to wrap another key.'unwrapKey'
- The key may be used to unwrap another key.Valid key usages depend on the key algorithm (identified by cryptokey.algorithm.name
).
Key Type | 'encrypt' |
'decrypt' |
'sign' |
'verify' |
'deriveKey' |
'deriveBits' |
'wrapKey' |
'unwrapKey' |
---|---|---|---|---|---|---|---|---|
'AES-CBC' |
✔ | ✔ | ✔ | ✔ | ||||
'AES-CTR' |
✔ | ✔ | ✔ | ✔ | ||||
'AES-GCM' |
✔ | ✔ | ✔ | ✔ | ||||
'AES-KW' |
✔ | ✔ | ||||||
'ECDH' |
✔ | ✔ | ||||||
'X25519' 1
|
✔ | ✔ | ||||||
'X448' 1
|
✔ | ✔ | ||||||
'ECDSA' |
✔ | ✔ | ||||||
'Ed25519' 1
|
✔ | ✔ | ||||||
'Ed448' 1
|
✔ | ✔ | ||||||
'HDKF' |
✔ | ✔ | ||||||
'HMAC' |
✔ | ✔ | ||||||
'PBKDF2' |
✔ | ✔ | ||||||
'RSA-OAEP' |
✔ | ✔ | ✔ | ✔ | ||||
'RSA-PSS' |
✔ | ✔ | ||||||
'RSASSA-PKCS1-v1_5' |
✔ | ✔ |
CryptoKeyPair
The CryptoKeyPair
is a simple dictionary object with publicKey
and privateKey
properties, representing an asymmetric key pair.
cryptoKeyPair.privateKey
type
will be 'private'
.cryptoKeyPair.publicKey
type
will be 'public'
.SubtleCrypto
subtle.decrypt(algorithm, key, data)
algorithm
: <RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AesGcmParams>
key
: <CryptoKey>
data
: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Using the method and parameters specified in algorithm
and the keying material provided by key
, subtle.decrypt()
attempts to decipher the provided data
. If successful, the returned promise will be resolved with an <ArrayBuffer> containing the plaintext result.
The algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM
'subtle.deriveBits(algorithm, baseKey, length)
algorithm
: <AlgorithmIdentifier> | <EcdhKeyDeriveParams> | <HkdfParams> | <Pbkdf2Params>
baseKey
: <CryptoKey>
length
: <number> | <null>
Using the method and parameters specified in algorithm
and the keying material provided by baseKey
, subtle.deriveBits()
attempts to generate length
bits.
The Node.js implementation requires that when length
is a number it must be multiple of 8
.
When length
is null
the maximum number of bits for a given algorithm is generated. This is allowed for the 'ECDH'
, 'X25519'
, and 'X448'
algorithms.
If successful, the returned promise will be resolved with an <ArrayBuffer> containing the generated data.
The algorithms currently supported include:
subtle.deriveKey(algorithm, baseKey, derivedKeyAlgorithm, extractable, keyUsages)
algorithm
: <AlgorithmIdentifier> | <EcdhKeyDeriveParams> | <HkdfParams> | <Pbkdf2Params>
baseKey
: <CryptoKey>
derivedKeyAlgorithm
: <HmacKeyGenParams> | <AesKeyGenParams>
extractable
: <boolean>
keyUsages
: <string[]> See Key usages.Using the method and parameters specified in algorithm
, and the keying material provided by baseKey
, subtle.deriveKey()
attempts to generate a new <CryptoKey> based on the method and parameters in derivedKeyAlgorithm
.
Calling subtle.deriveKey()
is equivalent to calling subtle.deriveBits()
to generate raw keying material, then passing the result into the subtle.importKey()
method using the deriveKeyAlgorithm
, extractable
, and keyUsages
parameters as input.
The algorithms currently supported include:
subtle.digest(algorithm, data)
algorithm
: <string> | <Object>
data
: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Using the method identified by algorithm
, subtle.digest()
attempts to generate a digest of data
. If successful, the returned promise is resolved with an <ArrayBuffer> containing the computed digest.
If algorithm
is provided as a <string>, it must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If algorithm
is provided as an <Object>, it must have a name
property whose value is one of the above.
subtle.encrypt(algorithm, key, data)
algorithm
: <RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AesGcmParams>
key
: <CryptoKey>
Using the method and parameters specified by algorithm
and the keying material provided by key
, subtle.encrypt()
attempts to encipher data
. If successful, the returned promise is resolved with an <ArrayBuffer> containing the encrypted result.
The algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM
'subtle.exportKey(format, key)
format
: <string> Must be one of 'raw'
, 'pkcs8'
, 'spki'
, or 'jwk'
.key
: <CryptoKey>
Exports the given key into the specified format, if supported.
If the <CryptoKey> is not extractable, the returned promise will reject.
When format
is either 'pkcs8'
or 'spki'
and the export is successful, the returned promise will be resolved with an <ArrayBuffer> containing the exported key data.
When format
is 'jwk'
and the export is successful, the returned promise will be resolved with a JavaScript object conforming to the JSON Web Key specification.
Key Type | 'spki' |
'pkcs8' |
'jwk' |
'raw' |
---|---|---|---|---|
'AES-CBC' |
✔ | ✔ | ||
'AES-CTR' |
✔ | ✔ | ||
'AES-GCM' |
✔ | ✔ | ||
'AES-KW' |
✔ | ✔ | ||
'ECDH' |
✔ | ✔ | ✔ | ✔ |
'ECDSA' |
✔ | ✔ | ✔ | ✔ |
'Ed25519' 1
|
✔ | ✔ | ✔ | ✔ |
'Ed448' 1
|
✔ | ✔ | ✔ | ✔ |
'HDKF' |
||||
'HMAC' |
✔ | ✔ | ||
'PBKDF2' |
||||
'RSA-OAEP' |
✔ | ✔ | ✔ | |
'RSA-PSS' |
✔ | ✔ | ✔ | |
'RSASSA-PKCS1-v1_5' |
✔ | ✔ | ✔ |
subtle.generateKey(algorithm, extractable, keyUsages)
algorithm
: <AlgorithmIdentifier> | <RsaHashedKeyGenParams> | <EcKeyGenParams> | <HmacKeyGenParams> | <AesKeyGenParams>
extractable
: <boolean>
keyUsages
: <string[]> See Key usages.Using the method and parameters provided in algorithm
, subtle.generateKey()
attempts to generate new keying material. Depending the method used, the method may generate either a single <CryptoKey> or a <CryptoKeyPair>.
The <CryptoKeyPair> (public and private key) generating algorithms supported include:
The <CryptoKey> (secret key) generating algorithms supported include:
'HMAC'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
subtle.importKey(format, keyData, algorithm, extractable, keyUsages)
format
: <string> Must be one of 'raw'
, 'pkcs8'
, 'spki'
, or 'jwk'
.keyData
: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer> | <Object>
algorithm
: <AlgorithmIdentifier> | <RsaHashedImportParams> | <EcKeyImportParams> | <HmacImportParams>
extractable
: <boolean>
keyUsages
: <string[]> See Key usages.The subtle.importKey()
method attempts to interpret the provided keyData
as the given format
to create a <CryptoKey> instance using the provided algorithm
, extractable
, and keyUsages
arguments. If the import is successful, the returned promise will be resolved with the created <CryptoKey>.
If importing a 'PBKDF2'
key, extractable
must be false
.
The algorithms currently supported include:
Key Type | 'spki' |
'pkcs8' |
'jwk' |
'raw' |
---|---|---|---|---|
'AES-CBC' |
✔ | ✔ | ||
'AES-CTR' |
✔ | ✔ | ||
'AES-GCM' |
✔ | ✔ | ||
'AES-KW' |
✔ | ✔ | ||
'ECDH' |
✔ | ✔ | ✔ | ✔ |
'X25519' 1
|
✔ | ✔ | ✔ | ✔ |
'X448' 1
|
✔ | ✔ | ✔ | ✔ |
'ECDSA' |
✔ | ✔ | ✔ | ✔ |
'Ed25519' 1
|
✔ | ✔ | ✔ | ✔ |
'Ed448' 1
|
✔ | ✔ | ✔ | ✔ |
'HDKF' |
✔ | |||
'HMAC' |
✔ | ✔ | ||
'PBKDF2' |
✔ | |||
'RSA-OAEP' |
✔ | ✔ | ✔ | |
'RSA-PSS' |
✔ | ✔ | ✔ | |
'RSASSA-PKCS1-v1_5' |
✔ | ✔ | ✔ |
subtle.sign(algorithm, key, data)
algorithm
: <AlgorithmIdentifier> | <RsaPssParams> | <EcdsaParams> | <Ed448Params>
key
: <CryptoKey>
data
: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Using the method and parameters given by algorithm
and the keying material provided by key
, subtle.sign()
attempts to generate a cryptographic signature of data
. If successful, the returned promise is resolved with an <ArrayBuffer> containing the generated signature.
The algorithms currently supported include:
subtle.unwrapKey(format, wrappedKey, unwrappingKey, unwrapAlgo, unwrappedKeyAlgo, extractable, keyUsages)
format
: <string> Must be one of 'raw'
, 'pkcs8'
, 'spki'
, or 'jwk'
.wrappedKey
: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
unwrappingKey
: <CryptoKey>
unwrapAlgo
: <AlgorithmIdentifier> | <RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AesGcmParams>
unwrappedKeyAlgo
: <AlgorithmIdentifier> | <RsaHashedImportParams> | <EcKeyImportParams> | <HmacImportParams>
extractable
: <boolean>
keyUsages
: <string[]> See Key usages.In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material. The subtle.unwrapKey()
method attempts to decrypt a wrapped key and create a <CryptoKey> instance. It is equivalent to calling subtle.decrypt()
first on the encrypted key data (using the wrappedKey
, unwrapAlgo
, and unwrappingKey
arguments as input) then passing the results in to the subtle.importKey()
method using the unwrappedKeyAlgo
, extractable
, and keyUsages
arguments as inputs. If successful, the returned promise is resolved with a <CryptoKey> object.
The wrapping algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
The unwrapped key algorithms supported include:
'RSASSA-PKCS1-v1_5'
'RSA-PSS'
'RSA-OAEP'
'ECDSA'
'Ed25519'
1
'Ed448'
1
'ECDH'
'X25519'
1
'X448'
1
'HMAC'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
subtle.verify(algorithm, key, signature, data)
algorithm
: <AlgorithmIdentifier> | <RsaPssParams> | <EcdsaParams> | <Ed448Params>
key
: <CryptoKey>
signature
: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
data
: <ArrayBuffer> | <TypedArray> | <DataView> | <Buffer>
Using the method and parameters given in algorithm
and the keying material provided by key
, subtle.verify()
attempts to verify that signature
is a valid cryptographic signature of data
. The returned promise is resolved with either true
or false
.
The algorithms currently supported include:
subtle.wrapKey(format, key, wrappingKey, wrapAlgo)
format
: <string> Must be one of 'raw'
, 'pkcs8'
, 'spki'
, or 'jwk'
.key
: <CryptoKey>
wrappingKey
: <CryptoKey>
wrapAlgo
: <AlgorithmIdentifier> | <RsaOaepParams> | <AesCtrParams> | <AesCbcParams> | <AesGcmParams>
In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material. The subtle.wrapKey()
method exports the keying material into the format identified by format
, then encrypts it using the method and parameters specified by wrapAlgo
and the keying material provided by wrappingKey
. It is the equivalent to calling subtle.exportKey()
using format
and key
as the arguments, then passing the result to the subtle.encrypt()
method using wrappingKey
and wrapAlgo
as inputs. If successful, the returned promise will be resolved with an <ArrayBuffer> containing the encrypted key data.
The wrapping algorithms currently supported include:
'RSA-OAEP'
'AES-CTR'
'AES-CBC'
'AES-GCM'
'AES-KW'
The algorithm parameter objects define the methods and parameters used by the various <SubtleCrypto> methods. While described here as "classes", they are simple JavaScript dictionary objects.
AlgorithmIdentifier
algorithmIdentifier.name
AesCbcParams
aesCbcParams.iv
Provides the initialization vector. It must be exactly 16-bytes in length and should be unpredictable and cryptographically random.
aesCbcParams.name
'AES-CBC'
.AesCtrParams
aesCtrParams.counter
The initial value of the counter block. This must be exactly 16 bytes long.
The AES-CTR
method uses the rightmost length
bits of the block as the counter and the remaining bits as the nonce.
aesCtrParams.length
aesCtrParams.counter
that are to be used as the counter.aesCtrParams.name
'AES-CTR'
.AesGcmParams
aesGcmParams.additionalData
With the AES-GCM method, the additionalData
is extra input that is not encrypted but is included in the authentication of the data. The use of additionalData
is optional.
aesGcmParams.iv
The initialization vector must be unique for every encryption operation using a given key.
Ideally, this is a deterministic 12-byte value that is computed in such a way that it is guaranteed to be unique across all invocations that use the same key. Alternatively, the initialization vector may consist of at least 12 cryptographically random bytes. For more information on constructing initialization vectors for AES-GCM, refer to Section 8 of NIST SP 800-38D.
aesGcmParams.name
'AES-GCM'
.aesGcmParams.tagLength
32
, 64
, 96
, 104
, 112
, 120
, or 128
. Default: 128
.AesKeyGenParams
aesKeyGenParams.length
The length of the AES key to be generated. This must be either 128
, 192
, or 256
.
aesKeyGenParams.name
'AES-CBC'
, 'AES-CTR'
, 'AES-GCM'
, or 'AES-KW'
EcdhKeyDeriveParams
ecdhKeyDeriveParams.name
'ECDH'
, 'X25519'
, or 'X448'
.ecdhKeyDeriveParams.public
ECDH key derivation operates by taking as input one parties private key and another parties public key -- using both to generate a common shared secret. The ecdhKeyDeriveParams.public
property is set to the other parties public key.
EcdsaParams
ecdsaParams.hash
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property whose value is one of the above listed values.
ecdsaParams.name
'ECDSA'
.EcKeyGenParams
ecKeyGenParams.name
'ECDSA'
or 'ECDH'
.ecKeyGenParams.namedCurve
'P-256'
, 'P-384'
, 'P-521'
.EcKeyImportParams
ecKeyImportParams.name
'ECDSA'
or 'ECDH'
.ecKeyImportParams.namedCurve
'P-256'
, 'P-384'
, 'P-521'
.Ed448Params
ed448Params.name
'Ed448'
.ed448Params.context
The context
member represents the optional context data to associate with the message. The Node.js Web Crypto API implementation only supports zero-length context which is equivalent to not providing context at all.
HkdfParams
hkdfParams.hash
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property whose value is one of the above listed values.
hkdfParams.info
Provides application-specific contextual input to the HKDF algorithm. This can be zero-length but must be provided.
hkdfParams.name
'HKDF'
.hkdfParams.salt
The salt value significantly improves the strength of the HKDF algorithm. It should be random or pseudorandom and should be the same length as the output of the digest function (for instance, if using 'SHA-256'
as the digest, the salt should be 256-bits of random data).
HmacImportParams
hmacImportParams.hash
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property whose value is one of the above listed values.
hmacImportParams.length
The optional number of bits in the HMAC key. This is optional and should be omitted for most cases.
hmacImportParams.name
'HMAC'
.HmacKeyGenParams
hmacKeyGenParams.hash
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property whose value is one of the above listed values.
hmacKeyGenParams.length
The number of bits to generate for the HMAC key. If omitted, the length will be determined by the hash algorithm used. This is optional and should be omitted for most cases.
hmacKeyGenParams.name
'HMAC'
.Pbkdf2Params
pbkdb2Params.hash
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property whose value is one of the above listed values.
pbkdf2Params.iterations
The number of iterations the PBKDF2 algorithm should make when deriving bits.
pbkdf2Params.name
'PBKDF2'
.pbkdf2Params.salt
Should be at least 16 random or pseudorandom bytes.
RsaHashedImportParams
rsaHashedImportParams.hash
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property whose value is one of the above listed values.
rsaHashedImportParams.name
'RSASSA-PKCS1-v1_5'
, 'RSA-PSS'
, or 'RSA-OAEP'
.RsaHashedKeyGenParams
rsaHashedKeyGenParams.hash
If represented as a <string>, the value must be one of:
'SHA-1'
'SHA-256'
'SHA-384'
'SHA-512'
If represented as an <Object>, the object must have a name
property whose value is one of the above listed values.
rsaHashedKeyGenParams.modulusLength
The length in bits of the RSA modulus. As a best practice, this should be at least 2048
.
rsaHashedKeyGenParams.name
'RSASSA-PKCS1-v1_5'
, 'RSA-PSS'
, or 'RSA-OAEP'
.rsaHashedKeyGenParams.publicExponent
The RSA public exponent. This must be a <Uint8Array> containing a big-endian, unsigned integer that must fit within 32-bits. The <Uint8Array> may contain an arbitrary number of leading zero-bits. The value must be a prime number. Unless there is reason to use a different value, use new Uint8Array([1, 0, 1])
(65537) as the public exponent.
RsaOaepParams
rsaOaepParams.label
An additional collection of bytes that will not be encrypted, but will be bound to the generated ciphertext.
The rsaOaepParams.label
parameter is optional.
rsaOaepParams.name
'RSA-OAEP'
.RsaPssParams
rsaPssParams.name
'RSA-PSS'
.rsaPssParams.saltLength
The length (in bytes) of the random salt to use.
© Joyent, Inc. and other Node contributors
Licensed under the MIT License.
Node.js is a trademark of Joyent, Inc. and is used with its permission.
We are not endorsed by or affiliated with Joyent.
https://nodejs.org/api/webcrypto.html