Source Code: lib/vm.js
The vm
module enables compiling and running code within V8 Virtual Machine contexts. The vm
module is not a security mechanism. Do not use it to run untrusted code.
JavaScript code can be compiled and run immediately or compiled, saved, and run later.
A common use case is to run the code in a different V8 Context. This means invoked code has a different global object than the invoking code.
One can provide the context by contextifying an object. The invoked code treats any property in the context like a global variable. Any changes to global variables caused by the invoked code are reflected in the context object.
const vm = require('vm'); const x = 1; const context = { x: 2 }; vm.createContext(context); // Contextify the object. const code = 'x += 40; var y = 17;'; // `x` and `y` are global variables in the context. // Initially, x has the value 2 because that is the value of context.x. vm.runInContext(code, context); console.log(context.x); // 42 console.log(context.y); // 17 console.log(x); // 1; y is not defined.
vm.Script
Instances of the vm.Script
class contain precompiled scripts that can be executed in specific contexts.
new vm.Script(code[, options])
code
<string> The JavaScript code to compile.filename
<string> Specifies the filename used in stack traces produced by this script. Default: 'evalmachine.<anonymous>'
.lineOffset
<number> Specifies the line number offset that is displayed in stack traces produced by this script. Default: 0
.columnOffset
<number> Specifies the column number offset that is displayed in stack traces produced by this script. Default: 0
.cachedData
<Buffer> | <TypedArray> | <DataView> Provides an optional Buffer
or TypedArray
, or DataView
with V8's code cache data for the supplied source. When supplied, the cachedDataRejected
value will be set to either true
or false
depending on acceptance of the data by V8.produceCachedData
<boolean> When true
and no cachedData
is present, V8 will attempt to produce code cache data for code
. Upon success, a Buffer
with V8's code cache data will be produced and stored in the cachedData
property of the returned vm.Script
instance. The cachedDataProduced
value will be set to either true
or false
depending on whether code cache data is produced successfully. This option is deprecated in favor of script.createCachedData()
. Default: false
.importModuleDynamically
<Function> Called during evaluation of this module when import()
is called. If this option is not specified, calls to import()
will reject with ERR_VM_DYNAMIC_IMPORT_CALLBACK_MISSING
. This option is part of the experimental modules API, and should not be considered stable.
specifier
<string> specifier passed to import()
module
<vm.Module>
vm.Module
is recommended in order to take advantage of error tracking, and to avoid issues with namespaces that contain then
function exports.If options
is a string, then it specifies the filename.
Creating a new vm.Script
object compiles code
but does not run it. The compiled vm.Script
can be run later multiple times. The code
is not bound to any global object; rather, it is bound before each run, just for that run.
script.createCachedData()
Creates a code cache that can be used with the Script constructor's cachedData
option. Returns a Buffer. This method may be called at any time and any number of times.
const script = new vm.Script(` function add(a, b) { return a + b; } const x = add(1, 2); `); const cacheWithoutX = script.createCachedData(); script.runInThisContext(); const cacheWithX = script.createCachedData();
script.runInContext(contextifiedObject[, options])
contextifiedObject
<Object> A contextified object as returned by the vm.createContext()
method.options
<Object>
displayErrors
<boolean> When true
, if an Error
occurs while compiling the code
, the line of code causing the error is attached to the stack trace. Default: true
.timeout
<integer> Specifies the number of milliseconds to execute code
before terminating execution. If execution is terminated, an Error
will be thrown. This value must be a strictly positive integer.breakOnSigint
<boolean> If true
, the execution will be terminated when SIGINT
(Ctrl+C) is received. Existing handlers for the event that have been attached via process.on('SIGINT')
will be disabled during script execution, but will continue to work after that. If execution is terminated, an Error
will be thrown. Default: false
.Runs the compiled code contained by the vm.Script
object within the given contextifiedObject
and returns the result. Running code does not have access to local scope.
The following example compiles code that increments a global variable, sets the value of another global variable, then execute the code multiple times. The globals are contained in the context
object.
const vm = require('vm'); const context = { animal: 'cat', count: 2 }; const script = new vm.Script('count += 1; name = "kitty";'); vm.createContext(context); for (let i = 0; i < 10; ++i) { script.runInContext(context); } console.log(context); // Prints: { animal: 'cat', count: 12, name: 'kitty' }
Using the timeout
or breakOnSigint
options will result in new event loops and corresponding threads being started, which have a non-zero performance overhead.
script.runInNewContext([contextObject[, options]])
contextObject
<Object> An object that will be contextified. If undefined
, a new object will be created.options
<Object>
displayErrors
<boolean> When true
, if an Error
occurs while compiling the code
, the line of code causing the error is attached to the stack trace. Default: true
.timeout
<integer> Specifies the number of milliseconds to execute code
before terminating execution. If execution is terminated, an Error
will be thrown. This value must be a strictly positive integer.breakOnSigint
<boolean> If true
, the execution will be terminated when SIGINT
(Ctrl+C) is received. Existing handlers for the event that have been attached via process.on('SIGINT')
will be disabled during script execution, but will continue to work after that. If execution is terminated, an Error
will be thrown. Default: false
.contextName
<string> Human-readable name of the newly created context. Default: 'VM Context i'
, where i
is an ascending numerical index of the created context.contextOrigin
<string> Origin corresponding to the newly created context for display purposes. The origin should be formatted like a URL, but with only the scheme, host, and port (if necessary), like the value of the url.origin
property of a URL
object. Most notably, this string should omit the trailing slash, as that denotes a path. Default: ''
.contextCodeGeneration
<Object>
First contextifies the given contextObject
, runs the compiled code contained by the vm.Script
object within the created context, and returns the result. Running code does not have access to local scope.
The following example compiles code that sets a global variable, then executes the code multiple times in different contexts. The globals are set on and contained within each individual context
.
const vm = require('vm'); const script = new vm.Script('globalVar = "set"'); const contexts = [{}, {}, {}]; contexts.forEach((context) => { script.runInNewContext(context); }); console.log(contexts); // Prints: [{ globalVar: 'set' }, { globalVar: 'set' }, { globalVar: 'set' }]
script.runInThisContext([options])
options
<Object>
displayErrors
<boolean> When true
, if an Error
occurs while compiling the code
, the line of code causing the error is attached to the stack trace. Default: true
.timeout
<integer> Specifies the number of milliseconds to execute code
before terminating execution. If execution is terminated, an Error
will be thrown. This value must be a strictly positive integer.breakOnSigint
<boolean> If true
, the execution will be terminated when SIGINT
(Ctrl+C) is received. Existing handlers for the event that have been attached via process.on('SIGINT')
will be disabled during script execution, but will continue to work after that. If execution is terminated, an Error
will be thrown. Default: false
.Runs the compiled code contained by the vm.Script
within the context of the current global
object. Running code does not have access to local scope, but does have access to the current global
object.
The following example compiles code that increments a global
variable then executes that code multiple times:
const vm = require('vm'); global.globalVar = 0; const script = new vm.Script('globalVar += 1', { filename: 'myfile.vm' }); for (let i = 0; i < 1000; ++i) { script.runInThisContext(); } console.log(globalVar); // 1000
vm.Module
This feature is only available with the --experimental-vm-modules
command flag enabled.
The vm.Module
class provides a low-level interface for using ECMAScript modules in VM contexts. It is the counterpart of the vm.Script
class that closely mirrors Module Records as defined in the ECMAScript specification.
Unlike vm.Script
however, every vm.Module
object is bound to a context from its creation. Operations on vm.Module
objects are intrinsically asynchronous, in contrast with the synchronous nature of vm.Script
objects. The use of 'async' functions can help with manipulating vm.Module
objects.
Using a vm.Module
object requires three distinct steps: creation/parsing, linking, and evaluation. These three steps are illustrated in the following example.
This implementation lies at a lower level than the ECMAScript Module loader. There is also no way to interact with the Loader yet, though support is planned.
const vm = require('vm'); const contextifiedObject = vm.createContext({ secret: 42 }); (async () => { // Step 1 // // Create a Module by constructing a new `vm.SourceTextModule` object. This // parses the provided source text, throwing a `SyntaxError` if anything goes // wrong. By default, a Module is created in the top context. But here, we // specify `contextifiedObject` as the context this Module belongs to. // // Here, we attempt to obtain the default export from the module "foo", and // put it into local binding "secret". const bar = new vm.SourceTextModule(` import s from 'foo'; s; `, { context: contextifiedObject }); // Step 2 // // "Link" the imported dependencies of this Module to it. // // The provided linking callback (the "linker") accepts two arguments: the // parent module (`bar` in this case) and the string that is the specifier of // the imported module. The callback is expected to return a Module that // corresponds to the provided specifier, with certain requirements documented // in `module.link()`. // // If linking has not started for the returned Module, the same linker // callback will be called on the returned Module. // // Even top-level Modules without dependencies must be explicitly linked. The // callback provided would never be called, however. // // The link() method returns a Promise that will be resolved when all the // Promises returned by the linker resolve. // // Note: This is a contrived example in that the linker function creates a new // "foo" module every time it is called. In a full-fledged module system, a // cache would probably be used to avoid duplicated modules. async function linker(specifier, referencingModule) { if (specifier === 'foo') { return new vm.SourceTextModule(` // The "secret" variable refers to the global variable we added to // "contextifiedObject" when creating the context. export default secret; `, { context: referencingModule.context }); // Using `contextifiedObject` instead of `referencingModule.context` // here would work as well. } throw new Error(`Unable to resolve dependency: ${specifier}`); } await bar.link(linker); // Step 3 // // Evaluate the Module. The evaluate() method returns a Promise with a single // property "result" that contains the result of the very last statement // executed in the Module. In the case of `bar`, it is `s;`, which refers to // the default export of the `foo` module, the `secret` we set in the // beginning to 42. const { result } = await bar.evaluate(); console.log(result); // Prints 42. })();
module.dependencySpecifiers
The specifiers of all dependencies of this module. The returned array is frozen to disallow any changes to it.
Corresponds to the [[RequestedModules]]
field of Cyclic Module Records in the ECMAScript specification.
module.error
If the module.status
is 'errored'
, this property contains the exception thrown by the module during evaluation. If the status is anything else, accessing this property will result in a thrown exception.
The value undefined
cannot be used for cases where there is not a thrown exception due to possible ambiguity with throw undefined;
.
Corresponds to the [[EvaluationError]]
field of Cyclic Module Records in the ECMAScript specification.
module.evaluate([options])
options
<Object>
timeout
<integer> Specifies the number of milliseconds to evaluate before terminating execution. If execution is interrupted, an Error
will be thrown. This value must be a strictly positive integer.breakOnSigint
<boolean> If true
, the execution will be terminated when SIGINT
(Ctrl+C) is received. Existing handlers for the event that have been attached via process.on('SIGINT')
will be disabled during script execution, but will continue to work after that. If execution is interrupted, an Error
will be thrown. Default: false
.Evaluate the module.
This must be called after the module has been linked; otherwise it will throw an error. It could be called also when the module has already been evaluated, in which case it will do one of the following two things:
undefined
if the initial evaluation ended in success (module.status
is 'evaluated'
)module.status
is 'errored'
)This method cannot be called while the module is being evaluated (module.status
is 'evaluating'
) to prevent infinite recursion.
Corresponds to the Evaluate() concrete method field of Cyclic Module Records in the ECMAScript specification.
module.link(linker)
linker
<Function>
specifier
<string> The specifier of the requested module:
import foo from 'foo'; // ^^^^^ the module specifier
referencingModule
<vm.Module> The Module
object link()
is called on.
Returns: <vm.Module> | <Promise>
Returns: <Promise>
Link module dependencies. This method must be called before evaluation, and can only be called once per module.
The function is expected to return a Module
object or a Promise
that eventually resolves to a Module
object. The returned Module
must satisfy the following two invariants:
Module
.status
must not be 'errored'
.If the returned Module
's status
is 'unlinked'
, this method will be recursively called on the returned Module
with the same provided linker
function.
link()
returns a Promise
that will either get resolved when all linking instances resolve to a valid Module
, or rejected if the linker function either throws an exception or returns an invalid Module
.
The linker function roughly corresponds to the implementation-defined HostResolveImportedModule abstract operation in the ECMAScript specification, with a few key differences:
The actual HostResolveImportedModule implementation used during module linking is one that returns the modules linked during linking. Since at that point all modules would have been fully linked already, the HostResolveImportedModule implementation is fully synchronous per specification.
Corresponds to the Link() concrete method field of Cyclic Module Records in the ECMAScript specification.
module.namespace
The namespace object of the module. This is only available after linking (module.link()
) has completed.
Corresponds to the GetModuleNamespace abstract operation in the ECMAScript specification.
module.status
The current status of the module. Will be one of:
'unlinked'
: module.link()
has not yet been called.
'linking'
: module.link()
has been called, but not all Promises returned by the linker function have been resolved yet.
'linked'
: The module has been linked successfully, and all of its dependencies are linked, but module.evaluate()
has not yet been called.
'evaluating'
: The module is being evaluated through a module.evaluate()
on itself or a parent module.
'evaluated'
: The module has been successfully evaluated.
'errored'
: The module has been evaluated, but an exception was thrown.
Other than 'errored'
, this status string corresponds to the specification's Cyclic Module Record's [[Status]]
field. 'errored'
corresponds to 'evaluated'
in the specification, but with [[EvaluationError]]
set to a value that is not undefined
.
module.identifier
The identifier of the current module, as set in the constructor.
vm.SourceTextModule
This feature is only available with the --experimental-vm-modules
command flag enabled.
The vm.SourceTextModule
class provides the Source Text Module Record as defined in the ECMAScript specification.
new vm.SourceTextModule(code[, options])
code
<string> JavaScript Module code to parseoptions
identifier
<string> String used in stack traces. Default: 'vm:module(i)'
where i
is a context-specific ascending index.cachedData
<Buffer> | <TypedArray> | <DataView> Provides an optional Buffer
or TypedArray
, or DataView
with V8's code cache data for the supplied source. The code
must be the same as the module from which this cachedData
was created.context
<Object> The contextified object as returned by the vm.createContext()
method, to compile and evaluate this Module
in.lineOffset
<integer> Specifies the line number offset that is displayed in stack traces produced by this Module
. Default: 0
.columnOffset
<integer> Specifies the column number offset that is displayed in stack traces produced by this Module
. Default: 0
.initializeImportMeta
<Function> Called during evaluation of this Module
to initialize the import.meta
.
meta
<import.meta>
module
<vm.SourceTextModule>
importModuleDynamically
<Function> Called during evaluation of this module when import()
is called. If this option is not specified, calls to import()
will reject with ERR_VM_DYNAMIC_IMPORT_CALLBACK_MISSING
.
specifier
<string> specifier passed to import()
module
<vm.Module>
vm.Module
is recommended in order to take advantage of error tracking, and to avoid issues with namespaces that contain then
function exports.Creates a new SourceTextModule
instance.
Properties assigned to the import.meta
object that are objects may allow the module to access information outside the specified context
. Use vm.runInContext()
to create objects in a specific context.
const vm = require('vm'); const contextifiedObject = vm.createContext({ secret: 42 }); (async () => { const module = new vm.SourceTextModule( 'Object.getPrototypeOf(import.meta.prop).secret = secret;', { initializeImportMeta(meta) { // Note: this object is created in the top context. As such, // Object.getPrototypeOf(import.meta.prop) points to the // Object.prototype in the top context rather than that in // the contextified object. meta.prop = {}; } }); // Since module has no dependencies, the linker function will never be called. await module.link(() => {}); await module.evaluate(); // Now, Object.prototype.secret will be equal to 42. // // To fix this problem, replace // meta.prop = {}; // above with // meta.prop = vm.runInContext('{}', contextifiedObject); })();
sourceTextModule.createCachedData()
Creates a code cache that can be used with the SourceTextModule constructor's cachedData
option. Returns a Buffer. This method may be called any number of times before the module has been evaluated.
// Create an initial module const module = new vm.SourceTextModule('const a = 1;'); // Create cached data from this module const cachedData = module.createCachedData(); // Create a new module using the cached data. The code must be the same. const module2 = new vm.SourceTextModule('const a = 1;', { cachedData });
vm.SyntheticModule
This feature is only available with the --experimental-vm-modules
command flag enabled.
The vm.SyntheticModule
class provides the Synthetic Module Record as defined in the WebIDL specification. The purpose of synthetic modules is to provide a generic interface for exposing non-JavaScript sources to ECMAScript module graphs.
const vm = require('vm'); const source = '{ "a": 1 }'; const module = new vm.SyntheticModule(['default'], function() { const obj = JSON.parse(source); this.setExport('default', obj); }); // Use `module` in linking...
new vm.SyntheticModule(exportNames, evaluateCallback[, options])
exportNames
<string[]> Array of names that will be exported from the module.evaluateCallback
<Function> Called when the module is evaluated.options
identifier
<string> String used in stack traces. Default: 'vm:module(i)'
where i
is a context-specific ascending index.context
<Object> The contextified object as returned by the vm.createContext()
method, to compile and evaluate this Module
in.Creates a new SyntheticModule
instance.
Objects assigned to the exports of this instance may allow importers of the module to access information outside the specified context
. Use vm.runInContext()
to create objects in a specific context.
syntheticModule.setExport(name, value)
This method is used after the module is linked to set the values of exports. If it is called before the module is linked, an ERR_VM_MODULE_STATUS
error will be thrown.
const vm = require('vm'); (async () => { const m = new vm.SyntheticModule(['x'], () => { m.setExport('x', 1); }); await m.link(() => {}); await m.evaluate(); assert.strictEqual(m.namespace.x, 1); })();
vm.compileFunction(code[, params[, options]])
code
<string> The body of the function to compile.params
<string[]> An array of strings containing all parameters for the function.options
<Object>
filename
<string> Specifies the filename used in stack traces produced by this script. Default: ''
.lineOffset
<number> Specifies the line number offset that is displayed in stack traces produced by this script. Default: 0
.columnOffset
<number> Specifies the column number offset that is displayed in stack traces produced by this script. Default: 0
.cachedData
<Buffer> | <TypedArray> | <DataView> Provides an optional Buffer
or TypedArray
, or DataView
with V8's code cache data for the supplied source.produceCachedData
<boolean> Specifies whether to produce new cache data. Default: false
.parsingContext
<Object> The contextified object in which the said function should be compiled in.contextExtensions
<Object[]> An array containing a collection of context extensions (objects wrapping the current scope) to be applied while compiling. Default: []
.Compiles the given code into the provided context (if no context is supplied, the current context is used), and returns it wrapped inside a function with the given params
.
vm.createContext([contextObject[, options]])
contextObject
<Object>
options
<Object>
name
<string> Human-readable name of the newly created context. Default: 'VM Context i'
, where i
is an ascending numerical index of the created context.origin
<string> Origin corresponding to the newly created context for display purposes. The origin should be formatted like a URL, but with only the scheme, host, and port (if necessary), like the value of the url.origin
property of a URL
object. Most notably, this string should omit the trailing slash, as that denotes a path. Default: ''
.codeGeneration
<Object>
If given a contextObject
, the vm.createContext()
method will prepare that object so that it can be used in calls to vm.runInContext()
or script.runInContext()
. Inside such scripts, the contextObject
will be the global object, retaining all of its existing properties but also having the built-in objects and functions any standard global object has. Outside of scripts run by the vm module, global variables will remain unchanged.
const vm = require('vm'); global.globalVar = 3; const context = { globalVar: 1 }; vm.createContext(context); vm.runInContext('globalVar *= 2;', context); console.log(context); // Prints: { globalVar: 2 } console.log(global.globalVar); // Prints: 3
If contextObject
is omitted (or passed explicitly as undefined
), a new, empty contextified object will be returned.
The vm.createContext()
method is primarily useful for creating a single context that can be used to run multiple scripts. For instance, if emulating a web browser, the method can be used to create a single context representing a window's global object, then run all <script>
tags together within that context.
The provided name
and origin
of the context are made visible through the Inspector API.
vm.isContext(object)
Returns true
if the given oject
object has been contextified using vm.createContext()
.
vm.runInContext(code, contextifiedObject[, options])
code
<string> The JavaScript code to compile and run.contextifiedObject
<Object> The contextified object that will be used as the global
when the code
is compiled and run.filename
<string> Specifies the filename used in stack traces produced by this script. Default: 'evalmachine.<anonymous>'
.lineOffset
<number> Specifies the line number offset that is displayed in stack traces produced by this script. Default: 0
.columnOffset
<number> Specifies the column number offset that is displayed in stack traces produced by this script. Default: 0
.displayErrors
<boolean> When true
, if an Error
occurs while compiling the code
, the line of code causing the error is attached to the stack trace. Default: true
.timeout
<integer> Specifies the number of milliseconds to execute code
before terminating execution. If execution is terminated, an Error
will be thrown. This value must be a strictly positive integer.breakOnSigint
<boolean> If true
, the execution will be terminated when SIGINT
(Ctrl+C) is received. Existing handlers for the event that have been attached via process.on('SIGINT')
will be disabled during script execution, but will continue to work after that. If execution is terminated, an Error
will be thrown. Default: false
.cachedData
<Buffer> | <TypedArray> | <DataView> Provides an optional Buffer
or TypedArray
, or DataView
with V8's code cache data for the supplied source. When supplied, the cachedDataRejected
value will be set to either true
or false
depending on acceptance of the data by V8.produceCachedData
<boolean> When true
and no cachedData
is present, V8 will attempt to produce code cache data for code
. Upon success, a Buffer
with V8's code cache data will be produced and stored in the cachedData
property of the returned vm.Script
instance. The cachedDataProduced
value will be set to either true
or false
depending on whether code cache data is produced successfully. This option is deprecated in favor of script.createCachedData()
. Default: false
.importModuleDynamically
<Function> Called during evaluation of this module when import()
is called. If this option is not specified, calls to import()
will reject with ERR_VM_DYNAMIC_IMPORT_CALLBACK_MISSING
. This option is part of the experimental modules API, and should not be considered stable.
specifier
<string> specifier passed to import()
module
<vm.Module>
vm.Module
is recommended in order to take advantage of error tracking, and to avoid issues with namespaces that contain then
function exports.The vm.runInContext()
method compiles code
, runs it within the context of the contextifiedObject
, then returns the result. Running code does not have access to the local scope. The contextifiedObject
object must have been previously contextified using the vm.createContext()
method.
If options
is a string, then it specifies the filename.
The following example compiles and executes different scripts using a single contextified object:
const vm = require('vm'); const contextObject = { globalVar: 1 }; vm.createContext(contextObject); for (let i = 0; i < 10; ++i) { vm.runInContext('globalVar *= 2;', contextObject); } console.log(contextObject); // Prints: { globalVar: 1024 }
vm.runInNewContext(code[, contextObject[, options]])
code
<string> The JavaScript code to compile and run.contextObject
<Object> An object that will be contextified. If undefined
, a new object will be created.filename
<string> Specifies the filename used in stack traces produced by this script. Default: 'evalmachine.<anonymous>'
.lineOffset
<number> Specifies the line number offset that is displayed in stack traces produced by this script. Default: 0
.columnOffset
<number> Specifies the column number offset that is displayed in stack traces produced by this script. Default: 0
.displayErrors
<boolean> When true
, if an Error
occurs while compiling the code
, the line of code causing the error is attached to the stack trace. Default: true
.timeout
<integer> Specifies the number of milliseconds to execute code
before terminating execution. If execution is terminated, an Error
will be thrown. This value must be a strictly positive integer.breakOnSigint
<boolean> If true
, the execution will be terminated when SIGINT
(Ctrl+C) is received. Existing handlers for the event that have been attached via process.on('SIGINT')
will be disabled during script execution, but will continue to work after that. If execution is terminated, an Error
will be thrown. Default: false
.contextName
<string> Human-readable name of the newly created context. Default: 'VM Context i'
, where i
is an ascending numerical index of the created context.contextOrigin
<string> Origin corresponding to the newly created context for display purposes. The origin should be formatted like a URL, but with only the scheme, host, and port (if necessary), like the value of the url.origin
property of a URL
object. Most notably, this string should omit the trailing slash, as that denotes a path. Default: ''
.contextCodeGeneration
<Object>
cachedData
<Buffer> | <TypedArray> | <DataView> Provides an optional Buffer
or TypedArray
, or DataView
with V8's code cache data for the supplied source. When supplied, the cachedDataRejected
value will be set to either true
or false
depending on acceptance of the data by V8.produceCachedData
<boolean> When true
and no cachedData
is present, V8 will attempt to produce code cache data for code
. Upon success, a Buffer
with V8's code cache data will be produced and stored in the cachedData
property of the returned vm.Script
instance. The cachedDataProduced
value will be set to either true
or false
depending on whether code cache data is produced successfully. This option is deprecated in favor of script.createCachedData()
. Default: false
.importModuleDynamically
<Function> Called during evaluation of this module when import()
is called. If this option is not specified, calls to import()
will reject with ERR_VM_DYNAMIC_IMPORT_CALLBACK_MISSING
. This option is part of the experimental modules API, and should not be considered stable.
specifier
<string> specifier passed to import()
module
<vm.Module>
vm.Module
is recommended in order to take advantage of error tracking, and to avoid issues with namespaces that contain then
function exports.The vm.runInNewContext()
first contextifies the given contextObject
(or creates a new contextObject
if passed as undefined
), compiles the code
, runs it within the created context, then returns the result. Running code does not have access to the local scope.
If options
is a string, then it specifies the filename.
The following example compiles and executes code that increments a global variable and sets a new one. These globals are contained in the contextObject
.
const vm = require('vm'); const contextObject = { animal: 'cat', count: 2 }; vm.runInNewContext('count += 1; name = "kitty"', contextObject); console.log(contextObject); // Prints: { animal: 'cat', count: 3, name: 'kitty' }
vm.runInThisContext(code[, options])
code
<string> The JavaScript code to compile and run.filename
<string> Specifies the filename used in stack traces produced by this script. Default: 'evalmachine.<anonymous>'
.lineOffset
<number> Specifies the line number offset that is displayed in stack traces produced by this script. Default: 0
.columnOffset
<number> Specifies the column number offset that is displayed in stack traces produced by this script. Default: 0
.displayErrors
<boolean> When true
, if an Error
occurs while compiling the code
, the line of code causing the error is attached to the stack trace. Default: true
.timeout
<integer> Specifies the number of milliseconds to execute code
before terminating execution. If execution is terminated, an Error
will be thrown. This value must be a strictly positive integer.breakOnSigint
<boolean> If true
, the execution will be terminated when SIGINT
(Ctrl+C) is received. Existing handlers for the event that have been attached via process.on('SIGINT')
will be disabled during script execution, but will continue to work after that. If execution is terminated, an Error
will be thrown. Default: false
.cachedData
<Buffer> | <TypedArray> | <DataView> Provides an optional Buffer
or TypedArray
, or DataView
with V8's code cache data for the supplied source. When supplied, the cachedDataRejected
value will be set to either true
or false
depending on acceptance of the data by V8.produceCachedData
<boolean> When true
and no cachedData
is present, V8 will attempt to produce code cache data for code
. Upon success, a Buffer
with V8's code cache data will be produced and stored in the cachedData
property of the returned vm.Script
instance. The cachedDataProduced
value will be set to either true
or false
depending on whether code cache data is produced successfully. This option is deprecated in favor of script.createCachedData()
. Default: false
.importModuleDynamically
<Function> Called during evaluation of this module when import()
is called. If this option is not specified, calls to import()
will reject with ERR_VM_DYNAMIC_IMPORT_CALLBACK_MISSING
. This option is part of the experimental modules API, and should not be considered stable.
specifier
<string> specifier passed to import()
module
<vm.Module>
vm.Module
is recommended in order to take advantage of error tracking, and to avoid issues with namespaces that contain then
function exports.vm.runInThisContext()
compiles code
, runs it within the context of the current global
and returns the result. Running code does not have access to local scope, but does have access to the current global
object.
If options
is a string, then it specifies the filename.
The following example illustrates using both vm.runInThisContext()
and the JavaScript eval()
function to run the same code:
const vm = require('vm'); let localVar = 'initial value'; const vmResult = vm.runInThisContext('localVar = "vm";'); console.log(`vmResult: '${vmResult}', localVar: '${localVar}'`); // Prints: vmResult: 'vm', localVar: 'initial value' const evalResult = eval('localVar = "eval";'); console.log(`evalResult: '${evalResult}', localVar: '${localVar}'`); // Prints: evalResult: 'eval', localVar: 'eval'
Because vm.runInThisContext()
does not have access to the local scope, localVar
is unchanged. In contrast, eval()
does have access to the local scope, so the value localVar
is changed. In this way vm.runInThisContext()
is much like an indirect eval()
call, e.g. (0,eval)('code')
.
When using either script.runInThisContext()
or vm.runInThisContext()
, the code is executed within the current V8 global context. The code passed to this VM context will have its own isolated scope.
In order to run a simple web server using the http
module the code passed to the context must either call require('http')
on its own, or have a reference to the http
module passed to it. For instance:
'use strict'; const vm = require('vm'); const code = ` ((require) => { const http = require('http'); http.createServer((request, response) => { response.writeHead(200, { 'Content-Type': 'text/plain' }); response.end('Hello World\\n'); }).listen(8124); console.log('Server running at http://127.0.0.1:8124/'); })`; vm.runInThisContext(code)(require);
The require()
in the above case shares the state with the context it is passed from. This may introduce risks when untrusted code is executed, e.g. altering objects in the context in unwanted ways.
All JavaScript executed within Node.js runs within the scope of a "context". According to the V8 Embedder's Guide:
In V8, a context is an execution environment that allows separate, unrelated, JavaScript applications to run in a single instance of V8. You must explicitly specify the context in which you want any JavaScript code to be run.
When the method vm.createContext()
is called, the contextObject
argument (or a newly-created object if contextObject
is undefined
) is associated internally with a new instance of a V8 Context. This V8 Context provides the code
run using the vm
module's methods with an isolated global environment within which it can operate. The process of creating the V8 Context and associating it with the contextObject
is what this document refers to as "contextifying" the object.
process.nextTick()
, promises, and queueMicrotask()
Because of the internal mechanics of how the process.nextTick()
queue and the microtask queue that underlies Promises are implemented within V8 and Node.js, it is possible for code running within a context to "escape" the timeout
set using vm.runInContext()
, vm.runInNewContext()
, and vm.runInThisContext()
.
For example, the following code executed by vm.runInNewContext()
with a timeout of 5 milliseconds schedules an infinite loop to run after a promise resolves. The scheduled loop is never interrupted by the timeout:
const vm = require('vm'); function loop() { while (1) console.log(Date.now()); } vm.runInNewContext( 'Promise.resolve().then(loop);', { loop, console }, { timeout: 5 } );
This issue also occurs when the loop()
call is scheduled using the process.nextTick()
and queueMicrotask()
functions.
This issue occurs because all contexts share the same microtask and nextTick queues.
© Joyent, Inc. and other Node contributors
Licensed under the MIT License.
Node.js is a trademark of Joyent, Inc. and is used with its permission.
We are not endorsed by or affiliated with Joyent.
https://nodejs.org/dist/latest-v12.x/docs/api/vm.html