numpy.ma.masked_object(x, value, copy=True, shrink=True) [source]
Mask the array x where the data are exactly equal to value.
This function is similar to masked_values, but only suitable for object arrays: for floating point, use masked_values instead.
| Parameters: |
|
|---|---|
| Returns: |
|
See also
masked_where
masked_equal
masked_values
>>> import numpy.ma as ma
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
>>> eat
masked_array(data=[--, 'ham'],
mask=[ True, False],
fill_value='green_eggs',
dtype=object)
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
>>> eat
masked_array(data=['cheese', 'ham', 'pineapple'],
mask=False,
fill_value='green_eggs',
dtype=object)
Note that mask is set to nomask if possible.
>>> eat
masked_array(data=['cheese', 'ham', 'pineapple'],
mask=False,
fill_value='green_eggs',
dtype=object)
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.ma.masked_object.html