numpy.nanmean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
[source]
Compute the arithmetic mean along the specified axis, ignoring NaNs.
Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64
intermediate and return values are used for integer inputs.
For all-NaN slices, NaN is returned and a RuntimeWarning
is raised.
New in version 1.8.0.
Parameters: |
|
---|---|
Returns: |
|
The arithmetic mean is the sum of the non-NaN elements along the axis divided by the number of non-NaN elements.
Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32
. Specifying a higher-precision accumulator using the dtype
keyword can alleviate this issue.
>>> a = np.array([[1, np.nan], [3, 4]]) >>> np.nanmean(a) 2.6666666666666665 >>> np.nanmean(a, axis=0) array([2., 4.]) >>> np.nanmean(a, axis=1) array([1., 3.5]) # may vary
© 2005–2019 NumPy Developers
Licensed under the 3-clause BSD License.
https://docs.scipy.org/doc/numpy-1.17.0/reference/generated/numpy.nanmean.html