In the descriptions of the following functions, z is the complex number x + iy, where i is defined as sqrt (-1)
.
Compute the magnitude of z.
The magnitude is defined as |z| = sqrt (x^2 + y^2)
.
For example:
abs (3 + 4i) ⇒ 5
See also: arg.
Compute the argument, i.e., angle of z.
This is defined as, theta = atan2 (y, x)
, in radians.
For example:
arg (3 + 4i) ⇒ 0.92730
See also: abs.
Return the complex conjugate of z.
The complex conjugate is defined as conj (z)
= x - iy.
Sort the numbers z into complex conjugate pairs ordered by increasing real part.
The negative imaginary complex numbers are placed first within each pair. All real numbers (those with abs (imag (z)) / abs (z) < tol
) are placed after the complex pairs.
tol is a weighting factor in the range [0, 1) which determines the tolerance of the matching. The default value is 100 * eps
and the resulting tolerance for a given complex pair is tol * abs (z(i)))
.
By default the complex pairs are sorted along the first non-singleton dimension of z. If dim is specified, then the complex pairs are sorted along this dimension.
Signal an error if some complex numbers could not be paired. Signal an error if all complex numbers are not exact conjugates (to within tol). Note that there is no defined order for pairs with identical real parts but differing imaginary parts.
cplxpair (exp (2i*pi*[0:4]'/5)) == exp (2i*pi*[3; 2; 4; 1; 0]/5)
© 1996–2018 John W. Eaton
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.
https://octave.org/doc/interpreter/Complex-Arithmetic.html