Serializable
, Comparable<Chronology>
, Chronology
public final class HijrahChronology extends AbstractChronology implements Serializable
The HijrahChronology follows the rules of the Hijrah calendar system. The Hijrah calendar has several variants based on differences in when the new moon is determined to have occurred and where the observation is made. In some variants the length of each month is computed algorithmically from the astronomical data for the moon and earth and in others the length of the month is determined by an authorized sighting of the new moon. For the algorithmically based calendars the calendar can project into the future. For sighting based calendars only historical data from past sightings is available.
The length of each month is 29 or 30 days. Ordinary years have 354 days; leap years have 355 days.
CLDR and LDML identify variants:
Chronology ID | Calendar Type | Locale extension, see Locale
| Description |
---|---|---|---|
Hijrah-umalqura | islamic-umalqura | ca-islamic-umalqura | Islamic - Umm Al-Qura calendar of Saudi Arabia |
Additional variants may be available through Chronology.getAvailableChronologies()
.
Example
Selecting the chronology from the locale uses Chronology.ofLocale(java.util.Locale)
to find the Chronology based on Locale supported BCP 47 extension mechanism to request a specific calendar ("ca"). For example,
Locale locale = Locale.forLanguageTag("en-US-u-ca-islamic-umalqura"); Chronology chrono = Chronology.ofLocale(locale);
ID
, the calendar type
, the start of the calendar, the alignment with the ISO calendar, and the length of each month for a range of years. The variants are loaded by HijrahChronology as a resource from hijrah-config-<calendar type>.properties. The Hijrah property resource is a set of properties that describe the calendar. The syntax is defined by java.util.Properties#load(Reader)
.
Property Name | Property value | Description |
---|---|---|
id | Chronology Id, for example, "Hijrah-umalqura" | The Id of the calendar in common usage |
type | Calendar type, for example, "islamic-umalqura" | LDML defines the calendar types |
version | Version, for example: "1.8.0_1" | The version of the Hijrah variant data |
iso-start | ISO start date, formatted as yyyy-MM-dd , for example: "1900-04-30" | The ISO date of the first day of the minimum Hijrah year. |
yyyy - a numeric 4 digit year, for example "1434" | The value is a sequence of 12 month lengths, for example: "29 30 29 30 29 30 30 30 29 30 29 29" | The lengths of the 12 months of the year separated by whitespace. A numeric year property must be present for every year without any gaps. The month lengths must be between 29-32 inclusive. |
Additional variants may be added by providing configuration properties files in <JAVA_HOME>/conf/chronology
directory. The properties files should follow the naming convention of hijrah-config-<chronology id>_<calendar type>.properties
.
Modifier and Type | Field | Description |
---|---|---|
static final HijrahChronology |
INSTANCE |
Singleton instance of the Islamic Umm Al-Qura calendar of Saudi Arabia. |
Modifier and Type | Method | Description |
---|---|---|
HijrahDate |
date |
Obtains a local date in Hijrah calendar system from the proleptic-year, month-of-year and day-of-month fields. |
HijrahDate |
date |
Obtains a local date in Hijrah calendar system from the era, year-of-era, month-of-year and day-of-month fields. |
HijrahDate |
date |
Obtains a local date in this chronology from another temporal object. |
HijrahDate |
dateEpochDay |
Obtains a local date in the Hijrah calendar system from the epoch-day. |
HijrahDate |
dateNow() |
Obtains the current local date in this chronology from the system clock in the default time-zone. |
HijrahDate |
dateNow |
Obtains the current local date in this chronology from the specified clock. |
HijrahDate |
dateNow |
Obtains the current local date in this chronology from the system clock in the specified time-zone. |
HijrahDate |
dateYearDay |
Obtains a local date in Hijrah calendar system from the proleptic-year and day-of-year fields. |
HijrahDate |
dateYearDay |
Obtains a local date in Hijrah calendar system from the era, year-of-era and day-of-year fields. |
HijrahEra |
eraOf |
Creates the HijrahEra object from the numeric value. |
List |
eras() |
Gets the list of eras for the chronology. |
String |
getCalendarType() |
Gets the calendar type of the Islamic calendar. |
String |
getId() |
Gets the ID of the chronology. |
boolean |
isLeapYear |
Checks if the specified year is a leap year. |
ChronoLocalDateTime |
localDateTime |
Obtains a local date-time in this chronology from another temporal object. |
int |
prolepticYear |
Calculates the proleptic-year given the era and year-of-era. |
ValueRange |
range |
Gets the range of valid values for the specified field. |
HijrahDate |
resolveDate |
Resolves parsed ChronoField values into a date during parsing. |
ChronoZonedDateTime |
zonedDateTime |
Obtains a ChronoZonedDateTime in this chronology from an Instant . |
ChronoZonedDateTime |
zonedDateTime |
Obtains a ChronoZonedDateTime in this chronology from another temporal object. |
compareTo, equals, hashCode, toString
clone, finalize, getClass, notify, notifyAll, wait, wait, wait
epochSecond, epochSecond, getDisplayName, isIsoBased, period
public static final HijrahChronology INSTANCE
Chronology.getAvailableChronologies()
.public String getId()
The ID uniquely identifies the Chronology
. It can be used to lookup the Chronology
using Chronology.of(String)
.
getId
in interface Chronology
public String getCalendarType()
The calendar type is an identifier defined by the Unicode Locale Data Markup Language (LDML) specification. It can be used to lookup the Chronology
using Chronology.of(String)
.
getCalendarType
in interface Chronology
public HijrahDate date(Era era, int yearOfEra, int month, int dayOfMonth)
date
in interface Chronology
era
- the Hijrah era, not nullyearOfEra
- the year-of-eramonth
- the month-of-yeardayOfMonth
- the day-of-monthDateTimeException
- if unable to create the dateClassCastException
- if the era
is not a HijrahEra
public HijrahDate date(int prolepticYear, int month, int dayOfMonth)
date
in interface Chronology
prolepticYear
- the proleptic-yearmonth
- the month-of-yeardayOfMonth
- the day-of-monthDateTimeException
- if unable to create the datepublic HijrahDate dateYearDay(Era era, int yearOfEra, int dayOfYear)
dateYearDay
in interface Chronology
era
- the Hijrah era, not nullyearOfEra
- the year-of-eradayOfYear
- the day-of-yearDateTimeException
- if unable to create the dateClassCastException
- if the era
is not a HijrahEra
public HijrahDate dateYearDay(int prolepticYear, int dayOfYear)
dateYearDay
in interface Chronology
prolepticYear
- the proleptic-yeardayOfYear
- the day-of-yearDateTimeException
- if the value of the year is out of range, or if the day-of-year is invalid for the yearpublic HijrahDate dateEpochDay(long epochDay)
dateEpochDay
in interface Chronology
epochDay
- the epoch dayDateTimeException
- if unable to create the datepublic HijrahDate dateNow()
Chronology
This will query the system clock
in the default time-zone to obtain the current date.
Using this method will prevent the ability to use an alternate clock for testing because the clock is hard-coded.
dateNow
in interface Chronology
public HijrahDate dateNow(ZoneId zone)
Chronology
This will query the system clock
to obtain the current date. Specifying the time-zone avoids dependence on the default time-zone.
Using this method will prevent the ability to use an alternate clock for testing because the clock is hard-coded.
dateNow
in interface Chronology
zone
- the zone ID to use, not nullpublic HijrahDate dateNow(Clock clock)
Chronology
This will query the specified clock to obtain the current date - today. Using this method allows the use of an alternate clock for testing. The alternate clock may be introduced using dependency injection
.
dateNow
in interface Chronology
clock
- the clock to use, not nullpublic HijrahDate date(TemporalAccessor temporal)
Chronology
This obtains a date in this chronology based on the specified temporal. A TemporalAccessor
represents an arbitrary set of date and time information, which this factory converts to an instance of ChronoLocalDate
.
The conversion typically uses the EPOCH_DAY
field, which is standardized across calendar systems.
This method matches the signature of the functional interface TemporalQuery
allowing it to be used as a query via method reference, aChronology::date
.
date
in interface Chronology
temporal
- the temporal object to convert, not nullpublic ChronoLocalDateTime<HijrahDate> localDateTime(TemporalAccessor temporal)
Chronology
This obtains a date-time in this chronology based on the specified temporal. A TemporalAccessor
represents an arbitrary set of date and time information, which this factory converts to an instance of ChronoLocalDateTime
.
The conversion extracts and combines the ChronoLocalDate
and the LocalTime
from the temporal object. Implementations are permitted to perform optimizations such as accessing those fields that are equivalent to the relevant objects. The result uses this chronology.
This method matches the signature of the functional interface TemporalQuery
allowing it to be used as a query via method reference, aChronology::localDateTime
.
localDateTime
in interface Chronology
temporal
- the temporal object to convert, not nullpublic ChronoZonedDateTime<HijrahDate> zonedDateTime(TemporalAccessor temporal)
Chronology
ChronoZonedDateTime
in this chronology from another temporal object. This obtains a zoned date-time in this chronology based on the specified temporal. A TemporalAccessor
represents an arbitrary set of date and time information, which this factory converts to an instance of ChronoZonedDateTime
.
The conversion will first obtain a ZoneId
from the temporal object, falling back to a ZoneOffset
if necessary. It will then try to obtain an Instant
, falling back to a ChronoLocalDateTime
if necessary. The result will be either the combination of ZoneId
or ZoneOffset
with Instant
or ChronoLocalDateTime
. Implementations are permitted to perform optimizations such as accessing those fields that are equivalent to the relevant objects. The result uses this chronology.
This method matches the signature of the functional interface TemporalQuery
allowing it to be used as a query via method reference, aChronology::zonedDateTime
.
zonedDateTime
in interface Chronology
temporal
- the temporal object to convert, not nullpublic ChronoZonedDateTime<HijrahDate> zonedDateTime(Instant instant, ZoneId zone)
Chronology
ChronoZonedDateTime
in this chronology from an Instant
. This obtains a zoned date-time with the same instant as that specified.
zonedDateTime
in interface Chronology
instant
- the instant to create the date-time from, not nullzone
- the time-zone, not nullpublic boolean isLeapYear(long prolepticYear)
Chronology
A leap-year is a year of a longer length than normal. The exact meaning is determined by the chronology according to the following constraints.
Outside the range of valid years an implementation is free to return either a best guess or false. An implementation must not throw an exception, even if the year is outside the range of valid years.
isLeapYear
in interface Chronology
prolepticYear
- the proleptic-year to check, not validated for rangepublic int prolepticYear(Era era, int yearOfEra)
Chronology
This combines the era and year-of-era into the single proleptic-year field.
If the chronology makes active use of eras, such as JapaneseChronology
then the year-of-era will be validated against the era. For other chronologies, validation is optional.
prolepticYear
in interface Chronology
era
- the era of the correct type for the chronology, not nullyearOfEra
- the chronology year-of-erapublic HijrahEra eraOf(int eraValue)
eraOf
in interface Chronology
eraValue
- the era valueDateTimeException
- if unable to create the erapublic List<Era> eras()
Chronology
Most calendar systems have an era, within which the year has meaning. If the calendar system does not support the concept of eras, an empty list must be returned.
eras
in interface Chronology
public ValueRange range(ChronoField field)
Chronology
All fields can be expressed as a long
integer. This method returns an object that describes the valid range for that value.
Note that the result only describes the minimum and maximum valid values and it is important not to read too much into them. For example, there could be values within the range that are invalid for the field.
This method will return a result whether or not the chronology supports the field.
range
in interface Chronology
field
- the field to get the range for, not nullpublic HijrahDate resolveDate(Map<TemporalField,Long> fieldValues, ResolverStyle resolverStyle)
AbstractChronology
ChronoField
values into a date during parsing. Most TemporalField
implementations are resolved using the resolve method on the field. By contrast, the ChronoField
class defines fields that only have meaning relative to the chronology. As such, ChronoField
date fields are resolved here in the context of a specific chronology.
ChronoField
instances are resolved by this method, which may be overridden in subclasses.
EPOCH_DAY
- If present, this is converted to a date and all other date fields are then cross-checked against the date. PROLEPTIC_MONTH
- If present, then it is split into the YEAR
and MONTH_OF_YEAR
. If the mode is strict or smart then the field is validated. YEAR_OF_ERA
and ERA
- If both are present, then they are combined to form a YEAR
. In lenient mode, the YEAR_OF_ERA
range is not validated, in smart and strict mode it is. The ERA
is validated for range in all three modes. If only the YEAR_OF_ERA
is present, and the mode is smart or lenient, then the last available era is assumed. In strict mode, no era is assumed and the YEAR_OF_ERA
is left untouched. If only the ERA
is present, then it is left untouched. YEAR
, MONTH_OF_YEAR
and DAY_OF_MONTH
- If all three are present, then they are combined to form a date. In all three modes, the YEAR
is validated. If the mode is smart or strict, then the month and day are validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the first month in the requested year, then adding the difference in months, then the difference in days. If the mode is smart, and the day-of-month is greater than the maximum for the year-month, then the day-of-month is adjusted to the last day-of-month. If the mode is strict, then the three fields must form a valid date. YEAR
and DAY_OF_YEAR
- If both are present, then they are combined to form a date. In all three modes, the YEAR
is validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the requested year, then adding the difference in days. If the mode is smart or strict, then the two fields must form a valid date. YEAR
, MONTH_OF_YEAR
, ALIGNED_WEEK_OF_MONTH
and ALIGNED_DAY_OF_WEEK_IN_MONTH
- If all four are present, then they are combined to form a date. In all three modes, the YEAR
is validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the first month in the requested year, then adding the difference in months, then the difference in weeks, then in days. If the mode is smart or strict, then the all four fields are validated to their outer ranges. The date is then combined in a manner equivalent to creating a date on the first day of the requested year and month, then adding the amount in weeks and days to reach their values. If the mode is strict, the date is additionally validated to check that the day and week adjustment did not change the month. YEAR
, MONTH_OF_YEAR
, ALIGNED_WEEK_OF_MONTH
and DAY_OF_WEEK
- If all four are present, then they are combined to form a date. The approach is the same as described above for years, months and weeks in ALIGNED_DAY_OF_WEEK_IN_MONTH
. The day-of-week is adjusted as the next or same matching day-of-week once the years, months and weeks have been handled. YEAR
, ALIGNED_WEEK_OF_YEAR
and ALIGNED_DAY_OF_WEEK_IN_YEAR
- If all three are present, then they are combined to form a date. In all three modes, the YEAR
is validated. If the mode is lenient, then the date is combined in a manner equivalent to creating a date on the first day of the requested year, then adding the difference in weeks, then in days. If the mode is smart or strict, then the all three fields are validated to their outer ranges. The date is then combined in a manner equivalent to creating a date on the first day of the requested year, then adding the amount in weeks and days to reach their values. If the mode is strict, the date is additionally validated to check that the day and week adjustment did not change the year. YEAR
, ALIGNED_WEEK_OF_YEAR
and DAY_OF_WEEK
- If all three are present, then they are combined to form a date. The approach is the same as described above for years and weeks in ALIGNED_DAY_OF_WEEK_IN_YEAR
. The day-of-week is adjusted as the next or same matching day-of-week once the years and weeks have been handled. The default implementation is suitable for most calendar systems. If ChronoField.YEAR_OF_ERA
is found without an ChronoField.ERA
then the last era in Chronology.eras()
is used. The implementation assumes a 7 day week, that the first day-of-month has the value 1, that first day-of-year has the value 1, and that the first of the month and year always exists.
resolveDate
in interface Chronology
resolveDate
in class AbstractChronology
fieldValues
- the map of fields to values, which can be updated, not nullresolverStyle
- the requested type of resolve, not null
© 1993, 2023, Oracle and/or its affiliates. All rights reserved.
Documentation extracted from Debian's OpenJDK Development Kit package.
Licensed under the GNU General Public License, version 2, with the Classpath Exception.
Various third party code in OpenJDK is licensed under different licenses (see Debian package).
Java and OpenJDK are trademarks or registered trademarks of Oracle and/or its affiliates.
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/time/chrono/HijrahChronology.html